Journal of the Korean Society for Library and Information Science
/
v.57
no.4
/
pp.25-47
/
2023
Library collaboration instruction (LCI) is a process in which a classroom teacher and librarian collaborate to co-planning, co-implementation, co-assessment instruction. LCI is being studied and modeled in various dimensions such as the level of collaboration, information activities, and time scheduling. However, there is no integrated model that comprehensively covers teacher and librarian collaboration. The purpose of this study is to propose a schematic integration model for LCI by comparing and analyzing various models in five dimensions (level of collaboration, information activities, collaborative approach, time scheduling, and technological integration). The main results of the integration model for LCI reflected in this study are as follows. First, in terms of the level of collaboration, TLC integration model reflected such as library-based teacher-led instruction, cross-curricular integrated curriculum. Second, in terms of information activities, LCI integration model reflected social and science subjects inquiry activities in addition to the information use process. Third, in terms of collaborative approach, LCI integration model is divided into such as lead-observation instruction and parallel station instruction. Fourth, in terms of time management, LCI integration model took into account the Korean national curriculum and scheduling methods. Fifth, in terms of technology integration, LCI integration model reflected the PICRAT model, modified from the perspective of library collaboration instruction.
This study aimed to investigate the influence of learning flow, career decision-making self-efficacy, and major satisfaction on career preparation behaviors among nursing students. Data were collected by questionnaire from 15th September 2022 to 14th October 2022, from 208 nursing students at universities in provinces the G and J. And the data answered to the questionnaire were analyzed by descriptive analysis, t-test, One-way ANOVA, Pearson's correlation, and Stepwise Regression Analysis. As a result of this study, career preparation behaviors was analysed based on learning flow (r=.515, p<.001), career decision-making self-efficacy (r=.681, p<.001) and major satisfaction (r=.621, p<.001). The results of the multiple regression analysis showed that the influential factors on career preparation behaviour were career decision-making self-efficacy (𝛽=.446, p<.001), major satisfaction (𝛽=.285, p<.001), third grade (𝛽=.157, p=.001), learning flow (𝛽=.133, p=.018), and second grade (𝛽=.106, p=.038), and the explanatory power of the career preparation behavior was 57.0%. Therefore, there is a need to provide customised education through a career programme that takes into account the career path chosen by nursing students.
Recently, many studies have been conducted to increase the accuracy of stock price prediction by analyzing candlestick charts using artificial intelligence techniques. However, these studies failed to consider the time-series characteristics of candlestick charts and to take into account the emotional state of market participants in data learning for stock price prediction. In order to overcome these limitations, this study produced input data by combining volatility index and candlestick charts to consider the emotional state of market participants, and used the data as input for a new method proposed on the basis of combining variantion autoencoder (VAE) and attention mechanisms for considering the time-series characteristics of candlestick chart. Fifty firms were randomly selected from the S&P 500 index and their stock prices were predicted to evaluate the performance of the method compared with existing ones such as convolutional neural network (CNN) or long-short term memory (LSTM). The results indicated the method proposed in this study showed superior performance compared to the existing ones. This study implied that the accuracy of stock price prediction could be improved by considering the emotional state of market participants and the time-series characteristics of the candlestick chart.
This study is a descriptive research study to determine the extent to which end-of-life care stress, death awareness, and prior decision-making attitudes of nurses at a hospice and palliative nursing institution have an impact on end-of-life care performance. The subjects of this study were 200 nurses working at a hospice and palliative nursing institution. Data collection for this study was conducted from August 9 to September 30, 2021, using two methods: written questionnaire and internet survey. The data analysis method used Pearson's correlation coefficient to analyze the relationship between the subjects' end-of-life care stress, death awareness, prior decision-making attitude, and end-of-life care performance. Hierarchical Regression was used to identify factors affecting the subject's end-of-life care performance. The results of this study showed a significant correlation between end-of-life care performance and death awareness (r=.22, p=.002), and end-of-life care performance and prior decision-making attitude (r=.20, p=.004). And prior decision-making attitude and death awareness had a significant impact on end-of-life care performance. As death awareness and prior decision-making attitudes increased, end-of-life care performance increased, and end-of-life care stress did not appear to be a statistically significant factor influencing end-of-life care performance. In order to improve hospice nurses' ability to provide end-of-life care, intervention that takes into account the influencing factors is required.
With the advent of 4th industrial revolution, the manufacturing industry is converging with ICT and changing into the era of smart manufacturing. In the smart factory, all machines and facilities are connected based on ICT, and thus security should be further strengthened as it is exposed to complex security threats that were not previously recognized. To reduce the risk of security incidents and successfully implement smart factories, it is necessary to identify key security factors to be applied, taking into account the characteristics of the industrial environment of smart factories utilizing ICT. In this study, we propose a 'hierarchical classification model of security factors in smart factory' that includes terminal, network, platform/service categories and analyze the importance of security factors to be applied when developing smart factories. We conducted an assessment of importance of security factors to the groups of smart factories and security experts. In this study, the relative importance of security factors of smart factory was derived by using AHP technique, and the priority among the security factors is presented. Based on the results of this research, it contributes to building the smart factory more securely and establishing information security required in the era of smart manufacturing.
This study started by focusing on the internalization of the technology appraisal model into the credit rating model to increase the discriminative power of the credit rating model not only for SMEs but also for all companies, reflecting the items related to the financial stability of the enterprises among the technology appraisal items. Therefore, it is aimed to verify whether the technology appraisal model can be applied to identify high-stability SMEs in advance. We classified companies into industries (manufacturing vs. non-manufacturing) and the age of company (initial vs. non-initial), and defined as a high-stability company that has achieved an average debt ratio less than 1/2 of the group for three years. The C5.0 was applied to verify the discriminant power of the model. As a result of the analysis, there is a difference in importance according to the type of industry and the age of company at the sub-item level, but in the mid-item level the R&D capability was a key variable for discriminating high-stability SMEs. In the early stage of establishment, the funding capacity (diversification of funding methods, capital structure and capital cost which taking into account profitability) is an important variable in financial stability. However, we concluded that technology development infrastructure, which enables continuous performance as the age of company increase, becomes an important variable affecting financial stability. The classification accuracy of the model according to the age of company and industry is 71~91%, and it is confirmed that it is possible to identify high-stability SMEs by using technology appraisal items.
As cloud services and deployment models become diverse, there are a growing number of cloud computing selection options. Therefore, financial companies need a methodology to select the appropriated cloud for each financial computing system. This study adopted the Balanced Scorecard (BSC) framework to classify factors for the introduction of cloud computing in financial companies. Using Analytic Hierarchy Process (AHP), the evaluation items are layered into the performance perspective and the cloud consideration factor and a comprehensive decision model is proposed. To verify the proposed research model, a system of financial company is divided into three: account, information, and channel system, and the result of decision making by both financial business experts and technology experts from two financial companies were collected. The result shows that some common factors are important in all systems, but most of the factors considered are very different from system to system. We expect that our methodology contributes to the spread of cloud computing adoption.
Journal of the Korean Applied Science and Technology
/
v.40
no.6
/
pp.1498-1505
/
2023
This study attempted to investigate the difference in service orientation according to the individual characteristics of hair salon workers, and to identify the internal marketing factors of hair salon that influence service orientation. Questionnaires for empirical research were collected from hair salon workers in Gyeongnam, and the results of analyzing the collected questionnaires through IBM SPSS Statistics 26 are as follows. First, as a result of analyzing the difference in service orientation according to the individual characteristics of hair salon workers, the '40s or older' group and the 'working period of 10 years or longer' group showed statistically higher service orientation than other groups. Second, as a result of analyzing the causal relationship between internal marketing and service orientation, it was found that welfare, compensation system, education and training of internal marketings had the statistical effect on service orientation, and in particular, the compensation system had the strongest effect on service orientation. Therefore, service orientation for customers should be improved through internal marketing activities that take into account the individual characteristics of hair salon workers. The improvement of service orientation means the customer's intention to reuse, suggesting that ultimately the management performance of hair salon companies can be further improved.
The Journal of Korean Society for School & Community Health Education
/
v.25
no.1
/
pp.1-15
/
2024
Objectives: This study aims to examine the general characteristics and physical activity characteristics of young and middle-aged individuals with hypertension, with the goal of identifying key influencing factors and providing public health policy recommendations. Methods: Participants in this study used data from the 2021 Community Health Survey. The study participants include 5,511 individuals diagnosed with hypertension in the young and middle-aged group (aged 19 to 49). The collected data were analyzed using SPSS 26.0. Results: Model 1 is the influencing factors of young and middle-aged hypertensive patients according to general characteristics. The explanatory power is R2= .065. The influencing factors are as follows. Economic activity (𝛽= -.219, p<.001), breakfast per week (𝛽= .117, p<.001), gender (𝛽= .090, p<.001), subjective health status (𝛽= .073, p<.001), and education level (𝛽= .069, p<.001). Model 2 is the influencing factors of young and middle-aged hypertensive patients, including physical activity characteristics. The explanatory power is R2= .076. The influencing factors are as follows. Strength exercises (𝛽= -4.791, p<.001), the walking activity (𝛽= -2.694, p<.01), and the high-intensity physical activity (𝛽= -2.629, p<.01). Conclusion: The active management of young and middle-aged hypertension is essential to prevent progression to serious disease. To prevent hypertension in young and middle-aged people, health education is needed to develop and utilize health promotion programs that take into account general characteristics and physical activity characteristics.
Research Purpose : Based on artificial intelligence, this study considers learners' characteristics, learning content, and individual learning, and analyzes the collected learning data to develop a model that supports customized learning for individual learners. Research content and method : In order to achieve the research purpose, the literature was analyzed to investigate the structure of customized learning support, learning data analysis, and learning activities, and based on the investigated data, the area and detailed components of the customized learning support model were derived. did. A draft model was constructed through literature analysis, and the first expert Delphi survey was conducted on the draft model with five experts. The model was revised by reflecting the results of the first Delphi, and the validity of the revised model was verified through the second expert Delphi. The model was elaborated through expert Delphi, and the final model was constructed through this. Conclusion and Recommendation : Through research, customized learning support area, class management system area, and learning analysis data area were formed, and detailed elements were derived for each area. The results of this study provide basic data that can be used as a reference for constructing a customized learning support system based on artificial intelligence, taking into account the university's class environment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.