• Title/Summary/Keyword: accidents detection

Search Result 503, Processing Time 0.027 seconds

The Study Image Aquisition System for Radiation Source Using the Stereo Gamma-ray Detector (스테레오 감마선 탐지장치를 이용한 감마선원 분포측정 시스템에 관한 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho;Lee, Seung-Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.197-203
    • /
    • 2015
  • Nuclear power plant has increased continuously for power production in all over the world and the interest about nuclear accident and the dismantling of aging nuclear power plant has been a growing. The leaked radioactive source that is generated by radiation accidents must detect and remove to minimized the damage as soon as possible. Gamma-ray detection system that have been developed until now cannot provide the precise position of radioactive sources because they detect and imaging the position of radiation sources in just two dimensions. In this paper, stereo gamma ray detection system has developed and the algorithm for calculation of the distance has implemented to be able to measure the distribution of the leakage gamma ray source for the system. Stereo camera calibration for distance detection was conducted with the correction pattern and LED light and we carried out performance test of the system for the LED light source and a gamma ray source. In both experiments the results of the performance test, it was confirmed to have a 5% error. The results of this paper is used as a material for the development of gamma-ray imaging device.

Development of Personal Mobility Safety Driving Assistance System Using CNN-Based Object Detection and Boarding Detection Sensor (합성곱 신경망 기반 물체 인식과 탑승 감지 센서를 이용한 개인형 이동수단 주행 안전 보조 시스템 개발)

  • Son, Kwon Joong;Bae, Sung Hoon;Lee, Hyun June
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.211-218
    • /
    • 2021
  • A recent spread of personal mobility devices such as electric kickboards has brought about a rapid increase in accident cases. Such vehicles are susceptible to falling accidents due to their low dynamic stability and lack of outer protection chassis. This paper presents the development of an automatic emergency braking system and a safe starting system as driving assistance devices for electric kickboards. The braking system employed artificial intelligence to detect nearby threaening objects. The starting system was developed to disable powder to the motor until when the driver's boarding is confirmed. This study is meaningful in that it proposes the convergence technology of advanced driver assistance systems specialized for personal mobility devices.

A Study on Crack Detection in Asphalt Road Pavement Using Small Deep Learning (스몰 딥러닝을 이용한 아스팔트 도로 포장의 균열 탐지에 관한 연구)

  • Ji, Bongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.10
    • /
    • pp.13-19
    • /
    • 2021
  • Cracks in asphalt pavement occur due to changes in weather or impact from vehicles, and if cracks are left unattended, the life of the pavement may be shortened, and various accidents may occur. Therefore, studies have been conducted to detect cracks through images in order to quickly detect cracks in the asphalt pavement automatically and perform maintenance activity. Recent studies adopt machine-learning models for detecting cracks in asphalt road pavement using a Convolutional Neural Network. However, their practical use is limited because they require high-performance computing power. Therefore, this paper proposes a framework for detecting cracks in asphalt road pavement by applying a small deep learning model applicable to mobile devices. The small deep learning model proposed through the case study was compared with general deep learning models, and although it was a model with relatively few parameters, it showed similar performance to general deep learning models. The developed model is expected to be embedded and used in mobile devices or IoT for crack detection in asphalt pavement.

Analysis of Deep Learning Model for the Development of an Optimized Vehicle Occupancy Detection System (최적화된 차량 탑승인원 감지시스템 개발을 위한 딥러닝 모델 분석)

  • Lee, JiWon;Lee, DongJin;Jang, SungJin;Choi, DongGyu;Jang, JongWook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.146-151
    • /
    • 2021
  • Currently, the demand for vehicles from one family is increasing in many countries at home and abroad, reducing the number of people on the vehicle and increasing the number of vehicles on the road. The multi-passenger lane system, which is available to solve the problem of traffic congestion, is being implemented. The system allows police to monitor fast-moving vehicles with their own eyes to crack down on illegal vehicles, which is less accurate and accompanied by the risk of accidents. To address these problems, applying deep learning object recognition techniques using images from road sites will solve the aforementioned problems. Therefore, in this paper, we compare and analyze the performance of existing deep learning models, select a deep learning model that can identify real-time vehicle occupants through video, and propose a vehicle occupancy detection algorithm that complements the object-ident model's problems.

Machine learning based radar imaging algorithm for drone detection and classification (드론 탐지 및 분류를 위한 레이다 영상 기계학습 활용)

  • Moon, Min-Jung;Lee, Woo-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.619-627
    • /
    • 2021
  • Recent advance in low cost and light-weight drones has extended their application areas in both military and private sectors. Accordingly surveillance program against unfriendly drones has become an important issue. Drone detection and classification technique has long been emphasized in order to prevent attacks or accidents by commercial drones in urban areas. Most commercial drones have small sizes and low reflection and hence typical sensors that use acoustic, infrared, or radar signals exhibit limited performances. Recently, artificial intelligence algorithm has been actively exploited to enhance radar image identification performance. In this paper, we adopt machined learning algorithm for high resolution radar imaging in drone detection and classification applications. For this purpose, simulation is carried out against commercial drone models and compared with experimental data obtained through high resolution radar field test.

Driver Drowsiness Detection System using Image Recognition and Bio-signals (영상 인식 및 생체 신호를 이용한 운전자 졸음 감지 시스템)

  • Lee, Min-Hye;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.859-864
    • /
    • 2022
  • Drowsy driving, one of the biggest causes of traffic accidents every year, is accompanied by various factors. As a general method to check whether or not there is drowsiness, a method of identifying a driver's expression and driving pattern, and a method of analyzing bio-signals are being studied. This paper proposes a driver fatigue detection system using deep learning technology and bio-signal measurement technology. As the first step in the proposed method, deep learning is used to detect the driver's eye shape, yawning presence, and body movement to detect drowsiness. In the second stage, it was designed to increase the accuracy of the system by identifying the driver's fatigue state using the pulse wave signal and body temperature. As a result of the experiment, it was possible to reliably determine the driver's drowsiness and fatigue in real-time images.

Abnormality Detection Method of Factory Roof Fixation Bolt by Using AI

  • Kim, Su-Min;Sohn, Jung-Mo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.33-40
    • /
    • 2022
  • In this paper, we propose a system that analyzes drone photographic images of panel-type factory roofs and conducts abnormal detection of bolts. Currently, inspectors directly climb onto the roof to carry out the inspection. However, safety accidents caused by working conditions at high places are continuously occurring, and new alternatives are needed. In response, the results of drone photography, which has recently emerged as an alternative to the dangerous environment inspection plan, will be easily inspected by finding the location of abnormal bolts using deep learning. The system proposed in this study proceeds with scanning the captured drone image using a sample image for the situation where the bolt cap is released. Furthermore, the scanned position is discriminated by using AI, and the presence/absence of the bolt abnormality is accurately discriminated. The AI used in this study showed 99% accuracy in test results based on VGGNet.

Attack Detection Technology through Log4J Vulnerability Analysis in Cloud Environments (클라우드 환경에서 Log4J 취약점 분석을 통한 공격 탐지 기술)

  • Byeon, Jungyeon;Lee, Sanghee;Yoo, Chaeyeon;Park, Wonhyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.557-559
    • /
    • 2022
  • The use of open source has the advantage that the development environment is convenient and maintenance is easier, but there is a limitation in that it is easy to be exposed to vulnerabilities from a security point of view. In this regard, the LOG4J vulnerability, which is an open source logging library widely used in Apache, was recently discovered. Currently, the risk of this vulnerability is at the 'highest' level, and developers are using it in many systems without being aware of such a problem, so there is a risk that hacking accidents due to the LOG4J vulnerability will continue to occur in the future. In this paper, we analyze the LOG4J vulnerability in detail and propose a SNORT detection policy technology that can detect vulnerabilities more quickly and accurately in the security control system. Through this, it is expected that in the future, security-related beginners, security officers, and companies will be able to efficiently monitor and respond quickly and proactively in preparation for the LOG4J vulnerability.

  • PDF

Deep Learning-based Parcel Detection and Classification System Development Research. (딥러닝 기반 택배 탐지 및 분류 시스템 개발 연구)

  • Son, Seongho;Choi, Donggyu;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.323-325
    • /
    • 2021
  • The size of the delivery market in Korea is growing year by year. In recent years, the growth rate has skyrocketed due to the aftermath of the coronavirus. Looking at the domestic delivery market's volume trend in 2020, about 3.4 billion boxes increased by 21% compared to about 2.8 billion boxes last year. In addition, sales amounted to 7.5 trillion won, an increase of about 19% compared to 6.3 trillion won a year earlier. As the delivery market grows, the proportion of courier damage relief is also occurring at a considerable rate. About 33% of 1,000 people have experienced delivery accidents, and about 41% of the week have experienced damage or damage. In this paper, a deep learning model capable of detecting a parcel was created to detect a damaged parcel. A system that can check the performance of this model and detect and classify parcels during the delivery process using a real-time detection camera was studied.

  • PDF

Study on fire smoke identification method based on SVM and K fold cross verification fusion algorithm (SVM과 K 접힘 교차 검증 융합 알고리즘 기반의 화재 연기 식별 방법 연구)

  • Wang Yudong;Sangbong Park;Jeonghwa Heo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.843-847
    • /
    • 2023
  • In this paper, we propose a model for detecting efficient fire identification to prevent fires that can lead to various industrial accidents, farmland and large forest fires, with the widespread use of various chemicals and flammable substances as modern technology advances. This paper presents an algorithm that can detect fire smoke in a high-efficiency and short time using images, and an algorithm based on SVM(Support Vector Machine) and K fold cross-verification technologies. By analyzing images, fire and smoke detection algorithms have relatively superior detection performance compared to existing algorithms, and the analysis of fire and smoke characteristics detected in this paper is analyzed stably and efficiently and is expected to be used in various fields that may be exposed to fire risks in the future.