Automobile black boxes store and provide accident and driving information. The accident and driving information can be utilized to build scientific traffic-event database and can be applied in various industries. The objective of this study is to develop a recognition system of dangerous driving through analyzing the driving characteristic patterns. In this paper, possible dangerous driving models are classified into four models on the basis of vehicle behaviors(acceleration, deceleration, rotation) and accident types from existing statistical data. Dangerous driving data have been acquired through vehicle tests using automobile black boxes. Characteristics of driving patterns have been analyzed in order to classify dangerous driving models. For the recognition of dangerous driving, this study selected critical value of each dangerous driving model and developed the recognition algorithm of dangerous driving. The study has been verified by the application of recognition algorithm of dangerous driving and vehicle tests using automobile black boxes. The presented recognition methods of dangerous driving can be used for on-line/off-line management of drivers and vehicles.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2015.05a
/
pp.493-497
/
2015
This study was started with concern about problem of increasing physical and personal injury caused by traffic accidents, despite of technological advances in transportation. As the vehicles, which is currently produced, informs the driver only detecting the proximity of an object by the front and rear sensor, this study implemented the color detection algorithm, the circular shape recognition algorithm, and the distance recognition algorithm and built the accident prevention beyond accident perception, which commends to avoid the object or to stop the robot, if object was detected by algorithms. For the simulation, we made the Arduino vehicle robot equipped with compact wireless communication camera and confirmed that the robot successfully avoids an object or stops itself in simulated driving.
Kim, Kang Hyo;Moon, Hae Min;Shin, Ju Hyun;Pan, Sung Bum
Smart Media Journal
/
v.4
no.1
/
pp.39-43
/
2015
A vehicle black box helps to investigate the cause of accident by recording time, and videos as wells as shock information of the time of accident Lately, intelligent black box with accident prevention as well as existing functions is being studied. This paper proposes an applicable algorithm for vehicle black boxes that prevent any accident likely to occur while a car is parked, like robbery, theft or hit-and-run. Proposed algorithm provides object recognition, face detection and alarm as the object approaches car. Tests on the algorithm prove that it can recognize an approaching object, identify and set alarm if needed, depending on each risk level.
Bikers can be subjected to injuries from unexpected accidents even if they wear basic helmets. A properly designed airbag can efficiently protect the critical areas of the human body. This study introduces a wearable smart airbag system using machine learning techniques to protect human neck and shoulders. When a bicycle accident happens, a microprocessor analyzes the biker's motion data to recognize if it is a critical accident by comparing with accident classification models. These models are trained by a variety of possible accidents through machine learning techniques, like k-means and SVM methods. When the microprocessor decides it is a critical accident, it issues an actuation signal for the gas inflater to inflate the airbag. A protype of the wearable smart airbag with the machine learning techniques is developed and its performance is tested using a human dummy mounted on a moving cart.
The Journal of Korean Institute of Communications and Information Sciences
/
v.38C
no.7
/
pp.605-611
/
2013
If an accident vehicle propagates emergency messages to other vehicles close to it, the other drivers may realize and avoid the accident spot. In this letter, we propose a broadcast scheme to propagate emergency messages fast in urban VANETs (Vehicular Ad-Hoc Networks) with the help of GPS (Global Position System). In our scheme, a transmitting vehicle chooses the farthest node as the next relay vehicle to propagate emergency messages. And, we suggest an algorithm for intersection recognition and SCF (Store-Carry-Forward) task by taking advantage of periodic hello packets to reduce the propagation time and enhance the delivery ratio.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.21
no.3
/
pp.169-173
/
2021
Currently, safety accidents in hospitals are steadily occurring. In particular, safety accidents of elderly patients with weak immunity, such as nursing hospitals, continue to occur, and countermeasures are needed. Most accidents are caused by patient movement. As a method of reducing safety accidents by analyzing and recognizing the sound of the inpatient room according to the movement of the patient, this paper classifies the sound pattern for sound recognition in the hospital inpatient room using DTW (Dynamic Time Warping), an algorithm applicable to time-series pattern recognition. It was analyzed by applying it to the inpatient room environment.
Advancement in information technology have enabled applying vision sensor to railway, such as CCTV. CCTV has been widely used in railway application, however the CCTV is a passive system that provide limited capability to maintain safety from boarding platform. The station employee should monitor continuously CCTV monitors. Therefore immediate recognition and response to the situation is difficultin emergency situation. Recently, urban transit operators are pursuing applying an unattended station operation system for their cost reduction. Therefore, an intelligent monitoring system is need for passenger's safety in railway. The paper proposes a vision based monitoring system and object detection algorithm for passenger's safety in railway platform. The proposed system automatically detects accident in platform and analyzes level of danger using image processing technology. The system uses stereo vision technology with multi-sensors for minimizing detection error in various railway platform conditions.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.11a
/
pp.203-207
/
2006
Nowadays, Cars are continuing to grow at an alarming rate but they also cause many problems such as traffic accident, pollutions and so on. One of the most effective methods that prevent traffic accidents is the use of traffic monitoring systems, which are already widely used in many countries. The monitoring system is beginning to be used in domestic recently. An intelligent monitoring system generates photo images of cars as well as identifies cars by recognizing their plates. That is, the system automatically recognizes characters of vehicle plates. An automatic vehicle plate recognition consists of two main module: a vehicle plate locating module and a vehicle plate number identification module. We study for a vehicle plate number identification module in this paper. We use image preprocessing, feature extraction, multi-layer neural networks for recognizing characters of vehicle plates and we present a feature-comparison method for improving the performance of vehicle plate number identification module. In the experiment on identifying vehicle plate number, 300 images taken from various scenes were used. Of which, 8 images have been failed to identify vehicle plate number and the overall rate of success for our vehicle plate recognition algorithm is 98%.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.16
no.1
s.106
/
pp.27-33
/
2006
Fault diagnosis and condition monitoring for rotating machines are important for efficiency and accident prevention. The process of fault diagnosis is to extract the feature of signals and to classify each state. Conventionally, fault diagnosis has been developed by combining signal processing techniques for spectral analysis and pattern recognition, however these methods are not able to diagnose correctly for certain rotating machines and some faulty phenomena. In this paper, we add a minimum detection error algorithm to the previous method to reduce detection error rate. Vibration signals of the induction motor are measured and divided into subband signals. Each subband signal is processed to obtain the RMS, standard deviation and the statistic data for constructing the feature extraction vectors. We make a study of the fault diagnosis system that the feature extraction vectors are applied to K-means clustering algorithm and minimum detection error algorithm.
This study applied the web crawling technique for extracting big data news on water quality accidents in the water supply system and presented the algorithm in a procedural way to obtain accurate water quality accident news. In addition, in the case of a large-scale water quality accident, development patterns such as accident recognition, accident spread, accident response, and accident resolution appear according to the occurrence of an accident. That is, the analysis of the development of water quality accidents through key keywords and sentiment analysis for each stage was carried out in detail based on case studies, and the meanings were analyzed and derived. The proposed methodology was applied to the larval accident period of Incheon Metropolitan City in 2020 and analyzed. As a result, in a situation where the disclosure of information that directly affects consumers, such as water quality accidents, is restricted, the tone of news articles and media reports about water quality accidents with long-term damage in the event of an accident and the degree of consumer pride clearly change over time. could check This suggests the need to prepare consumer-centered policies to increase consumer positivity, although rapid restoration of facilities is very important for the development of water quality accidents from the supplier's point of view.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.