This study intends to present a traffic node-based and link-based accident prediction models using XGBoost which is very excellent in performance among machine learning models, and to develop those models with sustainability and scalability. Also, we intend to present those models which predict the number of annual traffic accidents based on road types, weather conditions, and traffic information using XGBoost. To this end, data sets were constructed by collecting and preprocessing traffic accident information, road information, weather information, and traffic information. The SHAP method was used to identify the variables affecting the number of traffic accidents. The five main variables of the traffic node-based accident prediction model were snow cover, precipitation, the number of entering lanes and connected links, and slow speed. Otherwise, those of the traffic link-based accident prediction model were snow cover, precipitation, the number of lanes, road length, and slow speed. As the evaluation results of those models, the RMSE values of those models were each 0.2035 and 0.2107. In this study, only data from Sejong City were used to our models, but ours can be applied to all regions where traffic nodes and links are constructed. Therefore, our prediction models can be extended to a wider range.
Macroscopic accident analyses have been conducted to incorporate transportation safety into long-term transportation planning. In macro-level accident prediction model, exposure variable(e.g. a settled population) have been used as fundamental explanatory variable under the concept that each trip will be subjected to a probable risk of accident. However, a settled population may be embedded error by exclusion of active population concept. The objective of this research study is to develop macro-level accident prediction model using floating population variable(concept of including a settled population and active population) collected from mobile phone data. The concept of accident prediction models is introduced utilizing exposure variable as explanatory variable in a generalized linear regression with assumption of a negative binomial error structure. The goodness of fit of model using floating population variable is compared with that of the each models using population and the number of household variables. Also, log transformation models are additionally developed to improve the goodness of fit. The results show that the log transformation model using floating population variable is useful for capturing the relationships between accident and exposure variable and generally perform better than the models using other existing exposure variables. The developed model using floating population variable can be used to guide transportation safety policy decision makers to allocate resources more efficiently for the regions(or zones) with higher risk and improve urban transportation safety in transportation planning step.
PURPOSES: Because expressway ramps are very complex segments where diverse roadway design elements dynamically change within relatively short length, drivers on ramps are required to drive their cars carefully for safety. Especially, ramps on expressways are designed to guarantee driving at high speed so that the risk and severity of traffic accidents on expressway ramps may be higher and more deadly than other facilities on expressways. Safe deceleration maneuvers are required on off-ramps, whereas safe acceleration maneuvers are necessary on onramps. This difference in required maneuvers may contribute to dissimilar patterns and severity of traffic accidents by ramp types. Therefore, this study was aimed at developing prediction models of the severity of traffic accidents on expressway on- and off-ramps separately in order to consider dissimilar patterns and severity of traffic accidents according to types of ramps. METHODS: Four-year-long traffic accident data between 2007 and 2010 were utilized to distinguish contributing design elements in conjunction with AADT and ramp length. The prediction models were built using the negative binomial regression model consisting of the severity of traffic accident as a dependent variable and contributing design elements as in independent variables. RESULTS: The developed regression models were evaluated using the traffic accident data of the ramps which was not used in building the models by comparing actual and estimated severity of traffic accidents. Conclusively, the average prediction error rates of on-ramps and offramps were 30.5% and 30.8% respectively. CONCLUSIONS: The prediction models for the severity of traffic accidents on expressway on- and off-ramps will be useful in enhancing the safety on expressway ramps as well as developing design guidelines for expressway ramps.
본 연구는 사고심각도 분류 및 예측을 위한 철도사고조사 통계기법에 관한 연구이다. 그동안의 선형 회귀분석은 사고 심각도 분석에 어려움이 있었으나 로지스틱회귀분석은 이를 보완할 수 있었다. 데이터마이닝 기법인 로지스틱회귀분석을 활용, 서울지하철(5~8호선) 역사 내 전도사고 중 에스컬레이터 전도사고 발생에 영향을 주는 사고예측 모형 변수는 사고자 연령, 음주여부, 사고 당시상황 및 행동, 핸드레일 잡음 여부였다. 분석의 정확도는 76.7%로 설명되었고 분석방법 결과에 따르면 정확도와 유의수준 측에서 로지스틱회귀분석 방법이 도시철도 사상사고 예측모형을 개발하는데 유용한 데이터마이닝 기법으로 판단된다.
도로설계 안전성을 평가하기 위해서는 도로의 설계 요소변화가 사고에 미치는 영향을 예측할 수 있어야 한다. 이를 위해 본 연구에서는 통계적 방법, 사고이력, 전문가의 판단, 그리고 기존문헌고찰 등 다양한 방법을 통하여, 설계요소의 특징과 사고율 및 사고빈도의 관계를 반영할 수 있는 AMF(Accident Modification Factor)를 개발하고자 하였다. 본 연구에서는 AMF를 좌회전전용차로, 우회전전용차로, 시거, 교차각 등의 항목을 대상으로 개발하였다. 개발된 AMF를 적용한 경우의 사고 예측값, 사고예측모형을 통한 예측값을 실제 사고데이터와 비교분석함으로써 적정성을 검토하였다. 분석결과, AMF를 적용한 예측값이 사고예측모형을 통한 예측 값보다 예측력이 우수함을 확인할 수 있었다. 이러한 결과는 사고를 예측함으로써 도로설계 안전성을 평가하는 알고리즘에 있어 AMF가 도로의 설계요소의 특성을 보다 효과적으로 반영하며, 지방부 교차로에서 각각의 해당요소가 사고에 미치는 영향을 판단할 수 있는 지표가 될 수 있음을 의미한다.
사고예측모형은 도로에서 발생한 교통사고자료를 통계적으로 모형화한 것으로 종속변수는 과거의 사고건수가 되고 설명 변수로는 주로 사고가 일어난 장소의 도로 기하구조 조건, 교통조건, 운영조건 등 도료의 속성자료가 이용된다. 기존의 사고예측모형의 한계를 극복하고자 새로운 방안인 Hauer의 연구를 구체적으로 소개하고 이를 국내 고속도로 사망사고자료를 통해 적용하였다. Hauer의 방법론에 의한 사고예측모형을 구축한 결과 AADT와 종단구배를 통해 사고예측모형의 적합도를 상당히 높일 수 있었으나, 곡선반경은 사고건수와 직접적 인 관련이 있는 것으로 파악되지 않았다. 이러한 사고예측모형은 기존의 모형과 비교 시 여러 설명변수 중 어떤 변수가 모형에 도입되어야 하는지를 결정할 때 분명한 근거를 지니기 때문에 중요한 변수가 누락되거나 혹은 중요하지 않는 변수가 도입될 가능성 이 낮아지는 장점을 지니고 있다.
The purpose of this study is to predict and classify the accident types based on the KOSHA (Korea Occupational Safety & Health Agency) and weather data. We also have an effort to suggest an important management method according to accident types by deriving feature importance. We designed two models based on accident data and weather data (model(a)) and only weather data (model(b)). As a result of random forest method, the model(b) showed a lack of accuracy in prediction. However, the model(a) presented more accurate prediction results than the model(b). Thus we presented safety management plan based on the results. In the future, this study will continue to carry out real time prediction to occurrence types to prevent safety accidents by supplementing the real time accident data and weather data.
고속도로에서 화물차는 승용차에 비해 도로의 많은 부분을 점유한다. 이로 인해 도로의 용량은 상대적으로 감소하며, 국소적으로 주변 운전자에게 위협적인 요소로 작용한다. 화물차 사고는 일반적인 사고와 달리 사고 특성이 다르므로 분석 방법 또한 일반적인 사고와 다르게 적용해야 한다. 사고 분석 방법 중 사고예측모형은 특정 구간에 대한 사고건수를 예측하며 교통계획을 수립할 때 사고 예방을 위한 대책 수립과 도로의 위험성을 진단할 때 활용된다. 이에 본 연구는 고속도로의 화물차 간 사고 비율을 적용하여 사고예측모형에 투입될 수 있는 보정계수를 산출하는 것을 목적으로 한다. 연구를 위해 고속도로를 대상으로 사고 자료를 수집하였으며 2014~2016년까지 3개 년도의 교통량 및 사고 자료를 활용하였다. 연간 사고건수를 토대로 사고예측모형을 개발하였으며, 본 연구를 통해 화물차 간 사고 비율에 따른 사고예측모형을 비교함으로써 실질적인 고속도로 사고예측모형을 확인하고 그에 대한 대책을 제시하고자 한다.
No, Young-Gyu;Kim, Ju-Hyun;Na, Man-Gyun;Lim, Dong-Hyuk;Ahn, Kwang-Il
Nuclear Engineering and Technology
/
제44권4호
/
pp.393-404
/
2012
After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.
PURPOSES : Although numerous researches have been studied to reveal accident causations for road intersections, there are still many research gaps for road segments. It is mainly because of difficulty of data and lack of analytical method. This study aims to study accident causations for rural road segments and develop accident modification factors for safety evaluation. The accident modification factors can be used to improve road safety. METHODS : Methods for developing AMF are diverse. This study developed AMFs using accident prediction models and selected explanatory variables from the accident models. In order to select final AMFs, three different methods were applied in the study. RESULTS : As a result of the study, many AMFs such as horizontal curves or vertical curves were developed and explained the meanings of the results. CONCLUSIONS : This study introduced meaningful methods for developing significant AMFs and also showed several AMFs. It is expected that traffic or road engineers will be able to use the AMFs to improve road segment safety.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.