• 제목/요약/키워드: accident prediction models

검색결과 105건 처리시간 0.033초

XGBoost를 이용한 교통노드 및 교통링크 기반의 교통사고 예측모델 개발 (Development of Traffic Accident Prediction Model Based on Traffic Node and Link Using XGBoost)

  • 김운식;김영규;고중훈
    • 산업경영시스템학회지
    • /
    • 제45권2호
    • /
    • pp.20-29
    • /
    • 2022
  • This study intends to present a traffic node-based and link-based accident prediction models using XGBoost which is very excellent in performance among machine learning models, and to develop those models with sustainability and scalability. Also, we intend to present those models which predict the number of annual traffic accidents based on road types, weather conditions, and traffic information using XGBoost. To this end, data sets were constructed by collecting and preprocessing traffic accident information, road information, weather information, and traffic information. The SHAP method was used to identify the variables affecting the number of traffic accidents. The five main variables of the traffic node-based accident prediction model were snow cover, precipitation, the number of entering lanes and connected links, and slow speed. Otherwise, those of the traffic link-based accident prediction model were snow cover, precipitation, the number of lanes, road length, and slow speed. As the evaluation results of those models, the RMSE values of those models were each 0.2035 and 0.2107. In this study, only data from Sejong City were used to our models, but ours can be applied to all regions where traffic nodes and links are constructed. Therefore, our prediction models can be extended to a wider range.

이동통신 자료를 활용한 거시적 교통사고 예측 모형 개발 (Macro-Level Accident Prediction Model using Mobile Phone Data)

  • 곽호찬;송지영;이인묵;이준
    • 한국안전학회지
    • /
    • 제33권4호
    • /
    • pp.98-104
    • /
    • 2018
  • Macroscopic accident analyses have been conducted to incorporate transportation safety into long-term transportation planning. In macro-level accident prediction model, exposure variable(e.g. a settled population) have been used as fundamental explanatory variable under the concept that each trip will be subjected to a probable risk of accident. However, a settled population may be embedded error by exclusion of active population concept. The objective of this research study is to develop macro-level accident prediction model using floating population variable(concept of including a settled population and active population) collected from mobile phone data. The concept of accident prediction models is introduced utilizing exposure variable as explanatory variable in a generalized linear regression with assumption of a negative binomial error structure. The goodness of fit of model using floating population variable is compared with that of the each models using population and the number of household variables. Also, log transformation models are additionally developed to improve the goodness of fit. The results show that the log transformation model using floating population variable is useful for capturing the relationships between accident and exposure variable and generally perform better than the models using other existing exposure variables. The developed model using floating population variable can be used to guide transportation safety policy decision makers to allocate resources more efficiently for the regions(or zones) with higher risk and improve urban transportation safety in transportation planning step.

유입·유출특성을 고려한 고속도로 연결로의 교통사고 심각도 예측모형 (Prediction Models for the Severity of Traffic Accidents on Expressway On- and Off-Ramps)

  • 윤일수;박성호;윤정은;최진형;한음
    • 한국도로학회논문집
    • /
    • 제14권5호
    • /
    • pp.101-111
    • /
    • 2012
  • PURPOSES: Because expressway ramps are very complex segments where diverse roadway design elements dynamically change within relatively short length, drivers on ramps are required to drive their cars carefully for safety. Especially, ramps on expressways are designed to guarantee driving at high speed so that the risk and severity of traffic accidents on expressway ramps may be higher and more deadly than other facilities on expressways. Safe deceleration maneuvers are required on off-ramps, whereas safe acceleration maneuvers are necessary on onramps. This difference in required maneuvers may contribute to dissimilar patterns and severity of traffic accidents by ramp types. Therefore, this study was aimed at developing prediction models of the severity of traffic accidents on expressway on- and off-ramps separately in order to consider dissimilar patterns and severity of traffic accidents according to types of ramps. METHODS: Four-year-long traffic accident data between 2007 and 2010 were utilized to distinguish contributing design elements in conjunction with AADT and ramp length. The prediction models were built using the negative binomial regression model consisting of the severity of traffic accident as a dependent variable and contributing design elements as in independent variables. RESULTS: The developed regression models were evaluated using the traffic accident data of the ramps which was not used in building the models by comparing actual and estimated severity of traffic accidents. Conclusively, the average prediction error rates of on-ramps and offramps were 30.5% and 30.8% respectively. CONCLUSIONS: The prediction models for the severity of traffic accidents on expressway on- and off-ramps will be useful in enhancing the safety on expressway ramps as well as developing design guidelines for expressway ramps.

로지스틱회귀분석 모델을 활용한 도시철도 사상사고 사고예측모형 개발에 대한 연구 (Study on Accident Prediction Models in Urban Railway Casualty Accidents Using Logistic Regression Analysis Model)

  • 진수봉;이종우
    • 한국철도학회논문집
    • /
    • 제20권4호
    • /
    • pp.482-490
    • /
    • 2017
  • 본 연구는 사고심각도 분류 및 예측을 위한 철도사고조사 통계기법에 관한 연구이다. 그동안의 선형 회귀분석은 사고 심각도 분석에 어려움이 있었으나 로지스틱회귀분석은 이를 보완할 수 있었다. 데이터마이닝 기법인 로지스틱회귀분석을 활용, 서울지하철(5~8호선) 역사 내 전도사고 중 에스컬레이터 전도사고 발생에 영향을 주는 사고예측 모형 변수는 사고자 연령, 음주여부, 사고 당시상황 및 행동, 핸드레일 잡음 여부였다. 분석의 정확도는 76.7%로 설명되었고 분석방법 결과에 따르면 정확도와 유의수준 측에서 로지스틱회귀분석 방법이 도시철도 사상사고 예측모형을 개발하는데 유용한 데이터마이닝 기법으로 판단된다.

지방부 교차로의 도로설계 안전성 판단 알고리즘 구축을 위한 AMF 개발 (신호교차로를 중심으로) (Development of Accident Modification Factors for Road Design Safety Evaluation Algorithm of Rural Intersections)

  • 김응철;이동민;최은진;김도훈
    • 대한교통학회지
    • /
    • 제27권3호
    • /
    • pp.91-102
    • /
    • 2009
  • 도로설계 안전성을 평가하기 위해서는 도로의 설계 요소변화가 사고에 미치는 영향을 예측할 수 있어야 한다. 이를 위해 본 연구에서는 통계적 방법, 사고이력, 전문가의 판단, 그리고 기존문헌고찰 등 다양한 방법을 통하여, 설계요소의 특징과 사고율 및 사고빈도의 관계를 반영할 수 있는 AMF(Accident Modification Factor)를 개발하고자 하였다. 본 연구에서는 AMF를 좌회전전용차로, 우회전전용차로, 시거, 교차각 등의 항목을 대상으로 개발하였다. 개발된 AMF를 적용한 경우의 사고 예측값, 사고예측모형을 통한 예측값을 실제 사고데이터와 비교분석함으로써 적정성을 검토하였다. 분석결과, AMF를 적용한 예측값이 사고예측모형을 통한 예측 값보다 예측력이 우수함을 확인할 수 있었다. 이러한 결과는 사고를 예측함으로써 도로설계 안전성을 평가하는 알고리즘에 있어 AMF가 도로의 설계요소의 특성을 보다 효과적으로 반영하며, 지방부 교차로에서 각각의 해당요소가 사고에 미치는 영향을 판단할 수 있는 지표가 될 수 있음을 의미한다.

전통적 사고예측모형의 한계 및 개선방안 : Hauer 사고예측모형의 소개 및 적용 (What goes problematic in the Existing Accident Prediction Models and How to Make it Better)

  • 한상진;김근정;오순미
    • 한국도로학회논문집
    • /
    • 제10권1호
    • /
    • pp.19-29
    • /
    • 2008
  • 사고예측모형은 도로에서 발생한 교통사고자료를 통계적으로 모형화한 것으로 종속변수는 과거의 사고건수가 되고 설명 변수로는 주로 사고가 일어난 장소의 도로 기하구조 조건, 교통조건, 운영조건 등 도료의 속성자료가 이용된다. 기존의 사고예측모형의 한계를 극복하고자 새로운 방안인 Hauer의 연구를 구체적으로 소개하고 이를 국내 고속도로 사망사고자료를 통해 적용하였다. Hauer의 방법론에 의한 사고예측모형을 구축한 결과 AADT와 종단구배를 통해 사고예측모형의 적합도를 상당히 높일 수 있었으나, 곡선반경은 사고건수와 직접적 인 관련이 있는 것으로 파악되지 않았다. 이러한 사고예측모형은 기존의 모형과 비교 시 여러 설명변수 중 어떤 변수가 모형에 도입되어야 하는지를 결정할 때 분명한 근거를 지니기 때문에 중요한 변수가 누락되거나 혹은 중요하지 않는 변수가 도입될 가능성 이 낮아지는 장점을 지니고 있다.

  • PDF

랜덤 포레스트 기법을 이용한 건설현장 안전재해 예측 모형 기초 연구 (Basic Study on Safety Accident Prediction Model Using Random Forest in Construction Field)

  • 강경수;류한국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 추계 학술논문 발표대회
    • /
    • pp.59-60
    • /
    • 2018
  • The purpose of this study is to predict and classify the accident types based on the KOSHA (Korea Occupational Safety & Health Agency) and weather data. We also have an effort to suggest an important management method according to accident types by deriving feature importance. We designed two models based on accident data and weather data (model(a)) and only weather data (model(b)). As a result of random forest method, the model(b) showed a lack of accuracy in prediction. However, the model(a) presented more accurate prediction results than the model(b). Thus we presented safety management plan based on the results. In the future, this study will continue to carry out real time prediction to occurrence types to prevent safety accidents by supplementing the real time accident data and weather data.

  • PDF

화물차사고 비율에 따른 고속도로 교통사고 분석모형에 대한 연구 (A Study of Traffic Accident Analysis Model on Highway in Accordance with the Accident Rate of Trucks)

  • Yang, Sung-Ryong;Yoon, Byoung-jo;Ko, Eun-Hyeok
    • 한국재난정보학회 논문집
    • /
    • 제13권4호
    • /
    • pp.570-576
    • /
    • 2017
  • 고속도로에서 화물차는 승용차에 비해 도로의 많은 부분을 점유한다. 이로 인해 도로의 용량은 상대적으로 감소하며, 국소적으로 주변 운전자에게 위협적인 요소로 작용한다. 화물차 사고는 일반적인 사고와 달리 사고 특성이 다르므로 분석 방법 또한 일반적인 사고와 다르게 적용해야 한다. 사고 분석 방법 중 사고예측모형은 특정 구간에 대한 사고건수를 예측하며 교통계획을 수립할 때 사고 예방을 위한 대책 수립과 도로의 위험성을 진단할 때 활용된다. 이에 본 연구는 고속도로의 화물차 간 사고 비율을 적용하여 사고예측모형에 투입될 수 있는 보정계수를 산출하는 것을 목적으로 한다. 연구를 위해 고속도로를 대상으로 사고 자료를 수집하였으며 2014~2016년까지 3개 년도의 교통량 및 사고 자료를 활용하였다. 연간 사고건수를 토대로 사고예측모형을 개발하였으며, 본 연구를 통해 화물차 간 사고 비율에 따른 사고예측모형을 비교함으로써 실질적인 고속도로 사고예측모형을 확인하고 그에 대한 대책을 제시하고자 한다.

MONITORING SEVERE ACCIDENTS USING AI TECHNIQUES

  • No, Young-Gyu;Kim, Ju-Hyun;Na, Man-Gyun;Lim, Dong-Hyuk;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • 제44권4호
    • /
    • pp.393-404
    • /
    • 2012
  • After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.

지방부 도로구간의 사고수정계수 개발에 관한 연구 (A Study for Accident Modification Factors for Rural Road Segments)

  • 오주택;황정원
    • 한국도로학회논문집
    • /
    • 제15권6호
    • /
    • pp.113-123
    • /
    • 2013
  • PURPOSES : Although numerous researches have been studied to reveal accident causations for road intersections, there are still many research gaps for road segments. It is mainly because of difficulty of data and lack of analytical method. This study aims to study accident causations for rural road segments and develop accident modification factors for safety evaluation. The accident modification factors can be used to improve road safety. METHODS : Methods for developing AMF are diverse. This study developed AMFs using accident prediction models and selected explanatory variables from the accident models. In order to select final AMFs, three different methods were applied in the study. RESULTS : As a result of the study, many AMFs such as horizontal curves or vertical curves were developed and explained the meanings of the results. CONCLUSIONS : This study introduced meaningful methods for developing significant AMFs and also showed several AMFs. It is expected that traffic or road engineers will be able to use the AMFs to improve road segment safety.