• 제목/요약/키워드: accident analysis model

검색결과 847건 처리시간 0.023초

Failure analysis of prestressed concrete containment vessels under internal pressure considering thermomechanical coupling

  • Yu-Xiao Wu;Zi-Jian Fei;De-Cheng Feng;Meng-Yan Song
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4504-4517
    • /
    • 2023
  • After a loss of coolant accident (LOCA) in the prestressed concrete containment vessels (PCCVs) of nuclear power plants, the coupling of temperature and pressure can significantly affect the mechanical properties of the PCCVs. However, there is no consensus on how this coupling affects the failure mechanism of PCCVs. In this paper, a simplified finite element modeling method is proposed to study the effect of temperature and pressure coupling on PCCVs. The experiment results of a 1:4 scale PCCV model tested at Sandia National Laboratory (SNL) are compared with the results obtained from the proposed modeling approach. Seven working conditions are set up by varying the internal and external temperatures to investigate the failure mechanism of the PCCV model under the coupling effect of temperature and pressure. The results of this paper demonstrate that the finite element model established by the simplified finite element method proposed in this paper is highly consistent with the experimental results. Furthermore, the stress-displacement curve of the PCCV during loading can be divided into four stages, each of which corresponds to the damage to the concrete, steel liner, steel rebar, and prestressing tendon. Finally, the failure mechanism of the PCCV is significantly affected by temperature.

Big Data Analytics Applied to the Construction Site Accident Factor Analysis

  • KIM, Joon-soo;Lee, Ji-su;KIM, Byung-soo
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.678-679
    • /
    • 2015
  • Recently, safety accidents in construction sites are increasing. Accordingly, in this study, development of 'Big-Data Analysis Modeling' can collect articles from last 10 years which came from the Internet News and draw the cause of accidents that happening per season. In order to apply this study, Web Crawling Modeling that can collect 98% of desired information from the internet by using 'Xml', 'tm', "Rcurl' from the library of R, a statistical analysis program has been developed, and Datamining Model, which can draw useful information by using 'Principal Component Analysis' on the result of Work Frequency of 'Textmining.' Through Web Crawling Modeling, 7,384 out of 7,534 Internet News articles that have been posted from the past 10 years regarding "safety Accidents in construction sites", and recognized the characteristics of safety accidents that happening per season. The result showed that accidents caused by abnormal temperature and localized heavy rain, occurred frequently in spring and winter, and accidents caused by violation of safety regulations and breakdown of structures occurred frequently in spring and fall. Plus, the fact that accidents happening from collision of heavy equipment happens constantly every season was acknowledgeable. The result, which has been obtained from "Big-Data Analysis Modeling" corresponds with prior studies. Thus, the study is reliable and able to be applied to not only construction sites but also in the overall industry.

  • PDF

Investigation of thermal hydraulic behavior of the High Temperature Test Facility's lower plenum via large eddy simulation

  • Hyeongi Moon ;Sujong Yoon;Mauricio Tano-Retamale ;Aaron Epiney ;Minseop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3874-3897
    • /
    • 2023
  • A high-fidelity computational fluid dynamics (CFD) analysis was performed using the Large Eddy Simulation (LES) model for the lower plenum of the High-Temperature Test Facility (HTTF), a ¼ scale test facility of the modular high temperature gas-cooled reactor (MHTGR) managed by Oregon State University. In most next-generation nuclear reactors, thermal stress due to thermal striping is one of the risks to be curiously considered. This is also true for HTGRs, especially since the exhaust helium gas temperature is high. In order to evaluate these risks and performance, organizations in the United States led by the OECD NEA are conducting a thermal hydraulic code benchmark for HTGR, and the test facility used for this benchmark is HTTF. HTTF can perform experiments in both normal and accident situations and provide high-quality experimental data. However, it is difficult to provide sufficient data for benchmarking through experiments, and there is a problem with the reliability of CFD analysis results based on Reynolds-averaged Navier-Stokes to analyze thermal hydraulic behavior without verification. To solve this problem, high-fidelity 3-D CFD analysis was performed using the LES model for HTTF. It was also verified that the LES model can properly simulate this jet mixing phenomenon via a unit cell test that provides experimental information. As a result of CFD analysis, the lower the dependency of the sub-grid scale model, the closer to the actual analysis result. In the case of unit cell test CFD analysis and HTTF CFD analysis, the volume-averaged sub-grid scale model dependency was calculated to be 13.0% and 9.16%, respectively. As a result of HTTF analysis, quantitative data of the fluid inside the HTTF lower plenum was provided in this paper. As a result of qualitative analysis, the temperature was highest at the center of the lower plenum, while the temperature fluctuation was highest near the edge of the lower plenum wall. The power spectral density of temperature was analyzed via fast Fourier transform (FFT) for specific points on the center and side of the lower plenum. FFT results did not reveal specific frequency-dominant temperature fluctuations in the center part. It was confirmed that the temperature power spectral density (PSD) at the top increased from the center to the wake. The vortex was visualized using the well-known scalar Q-criterion, and as a result, the closer to the outlet duct, the greater the influence of the mainstream, so that the inflow jet vortex was dissipated and mixed at the top of the lower plenum. Additionally, FFT analysis was performed on the support structure near the corner of the lower plenum with large temperature fluctuations, and as a result, it was confirmed that the temperature fluctuation of the flow did not have a significant effect near the corner wall. In addition, the vortices generated from the lower plenum to the outlet duct were identified in this paper. It is considered that the quantitative and qualitative results presented in this paper will serve as reference data for the benchmark.

AHP 기법을 이용한 시내버스 교통사고 저감대책 의사결정 모델개발 (Development of Decision Making Model of Measures on the Decrease of Traffic Accident Following Implementation of Intra-city Bus by using AHP)

  • 최재원;정헌영;장석용
    • 대한토목학회논문집
    • /
    • 제31권5D호
    • /
    • pp.679-687
    • /
    • 2011
  • 시내버스 준공영제 시행이 시민들의 수송에 좋은 성과를 거두고 있지만 교통사망사고 증가에 따른 부작용이 발생하고 있다. 따라서 본 연구에서는 시내버스 준공영제 시행에 따른 교통사고 저감대책의 의사결정 모델 개발을 시도하였으며, 자료조사 및 분석방법은 교통전문가 설문과 계층분석법(AHP)을 활용하였다. 계층분석법(AHP)의 상위평가항목으로는 정량적 대책과 정성적 대책을 제시하였다. 하위평가항목 중 정량적 대책으로는 버스증차 및 안전장치 설치, 정류소 시설물 보완, 보행자 보호 시설물 보완, 교통안전 진단평가 및 보완으로 구성되어 있으며, 정성적 대책으로는 제도정비, 노선설계 보완, 교육 캠페인강화, 단속강화로 구성되었다. 분석결과를 살펴보면 첫째, 정성적 대책보다 정량적 대책에서 더 높은 가중치 결과가 나타났으며, 둘째, 정량적 대책으로는 정류소 시설물보완, 교통안전 진단평가 및 보완 순으로 나타났고, 셋째, 정성적 대책으로는 제도정비, 노선설계 보완 순으로 나타났다. 이런 결과는 향후 타시도의 교통사고 저감대책을 수립 시행할 경우 참고할 수 있는 기초 자료가 될 것이라고 사료된다.

상호인식 교통안전시설물 현장적용에 따른 효과검증 연구 (A Study on Verification of the effectiveness of Mutually Recognizable Traffic Safety Facilities)

  • 김기남;정용호;이민재
    • 한국산학기술학회논문지
    • /
    • 제20권12호
    • /
    • pp.468-474
    • /
    • 2019
  • 우리나라는 2018년 OECD 회원국 가운데 인구 10만명 당 8.4명으로 35개국 중 4위로 높은 사고율을 보이고 있으며, 그 중 어린이나 고령자와 같은 교통약자의 사망률은 42.2%로 OECD회원국 중 가장 높은 수준에 있다. 이에 어린이 및 노인 등 교통약자에 대한 보행 중 교통사고를 감소시킬 수 있도록 기존에 설치된 수동적인 교통안전시설물에서 보행자 및 운전자를 감지하고 차량과 보행자간에 정보를 인지하여 상호 인식하는 ICT기반 능동형 교통시설물 개발하였으며, 본 연구에서는 관련 문헌 검토 및 교통사고분석시스템 자료를 이용하여 스쿨존 및 고령자와 같은 교통약자의 사고 발생 시 사고요인을 분석하였으며, 교통사고 특성 분석 등을 통하여 교통약자의 보행 중 교통사고 저감을 위한 맞춤형 교통안전시설물을 개발하였다. 또한, 테스트베드를 설치하여 교통안전시설물의 시인성 측정을 통해 주행 중 전방주시빈도 및 차량주행속도를 측정하였으며, 속도감속에 따라 보행자사고 중상률을 예측하기 위하여 한국교통안전공단에서 실행한 속도별 "자동차 대 보행자 인체모형" 충돌실험모델을 적용한 결과, 시설물 설치 후 중상가능성은 4.6%로 크게 감소됨을 예측하였다. 이와 같이 테스트베드를 통해 교통안전시설물의 시인성 및 차량통행속도 저감 효과를 검증하였고, 보행자대 차량사고의 중상률을 예측하여 상호인식 교통안전시설물을 효과검증을 시행한 결과, 상호인식 교통안전시설물을 설치함에 따라 교통약자의 교통사고에 대한 저감효과를 기대한다.

건식저장용기에 대한 전복해석의 검증시험 (The Test for Verifying a Tip-Over Analysis of a Dry Storage Cask)

  • 김동학;서기석;이주찬;조천형;장현기;최병일
    • 방사성폐기물학회지
    • /
    • 제4권3호
    • /
    • pp.245-253
    • /
    • 2006
  • 사용후연료 건식저장용기의 전복사고조건에 대한 1/3 축소모델의 시험을 실시하여 전복해석에 대한 검증을 하였다. 전복해석은 전복각도에 따른 위치에너지와 동일한 운동에너지를 가지는 초기각속도를 이용하여 결정된 각 점에서의 속도를 충돌직전 모델에 대한 초기경계값으로 입력하여 해석하였다. 전복시험에 따른 캐니스터의 구조적 건전성을 확인하기 위하여 육안검사와 함께 액체침투법과 초음파 탐상법와 같은 비파괴검사를 실시하였다. 전복충격에 의하여 저장용기의 뚜껑 에 변형 이 발생되었지만 캐니스터의 구조적 건전성이 유지되었다. 시험에서 취득한 변형률과 가속도를 해석결과와 비교하여 해석 에 대한 검증을 실시하였다. 해석결과는 시험결과보다 대체로 두 배 정도의 큰 값을 주는 것으로 나타났다.

  • PDF

유한 요소법을 이용한 붐대의 동특성 해석 (Dynamic Analysis of Boom Using Finite Element Method)

  • 한수현;김병진;홍동표;태신호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.987-991
    • /
    • 2005
  • The Aerial platform Truck is widely used for work in high place with the aerial platform. The most important thing is that worker's safety and worker must be able to work with trustworthiness so it needs to be verified its stiffness, deflection of boom, and dynamic condition concerned with a rollover accident. It should have an analytical exactitude because it is directly linked with the worker safety. In this point, we are trying to develop a proper CAE analysis model concerned with a rollover safety, bending stress and deflection for load. The Aerial platform Truck have a dynamic characteristics by load and moving of boom in the work field, so its static and dynamic strength analysis, structural mechanics are very important. Therefore, we evaluate the safety of each boom to calculating its stress, deflection. A computer simulation program is used widely for doing applying calculation of stiffness and structural mechanics, then finally trying to find a optimum design of the Aerial platform Truck.

  • PDF

교육시설물의 수선교체비용에 대한 확률론적 분석 연구 (A Probabilistic Analysis on the Repair and Replacement Cost of Educational Facilities)

  • 유영진;손기영;김지명;김태희
    • 교육시설 논문지
    • /
    • 제25권1호
    • /
    • pp.3-12
    • /
    • 2018
  • Educational facilities are more uncertain about maintenance costs due to their comprehensive and long life-cycle compared to commercial buildings. In addition, maintenance of the existing post management system can not maintain the original function of education facilities continuously and economically. In order to overcome this problem, it is necessary to analyze the repair and replacement cost for the uncertainty factor in maintenance. This study propose a model to determine repair and maintenance cost and cycle of educational facility based on probabilistic estimation concept. For the analysis, Monte Carlo simulation, a probabilistic analysis method, was applied based on the repair and maintenance history data of the educational facilities in Florida. The results of this study can be used as a guideline for quantitative facility management and facility management research.

DEVELOPMENT OF MARS-GCR/V1 FOR THERMAL-HYDRAULIC SAFETY ANALYSIS OF GAS-COOLED REACTOR SYSTEMS

  • LEE WON-JAE;JEONG JAR-JUN;LEE SEUNG-WOOK;CHANG JONGHWA
    • Nuclear Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.587-594
    • /
    • 2005
  • In an effort to develop a thermal-hydraulic (TH) safety analysis code for Gas-cooled Reactors (GCRs), the MARS code, which was primarily developed for TH analysis of water reactor systems, has been extended here for application to GCRs. The modeling requirements of the system code were derived from a review of major processes and phenomena that are expected to occur during normal and accident conditions of GCRs. Models fur code improvement were then identified through a review of existing MARS code capability. Among these, the following priority models necessary fur the analysis of limiting high and low pressure conduction cooling events were evaluated and incorporated in MARS-GCR/V1 : 1) Helium (He) and Carbon Dioxide ($CO_2$) as main system fluids, 2) gas convection heat transfer, 3) radiation heat transfer, and 4) contact heat transfer models. Each model has been assessed using various conceptual problems for code-to-code benchmarks and it was demonstrated that MARS-GCR/V1 is capable of capturing the relevant phenomena. This paper describes the models implemented in MARS-GCR/V1 and their verification and validation results.

Developing a Method to Define Mountain Search Priority Areas Based on Behavioral Characteristics of Missing Persons

  • Yoo, Ho Jin;Lee, Jiyeong
    • 한국측량학회지
    • /
    • 제37권5호
    • /
    • pp.293-302
    • /
    • 2019
  • In mountain accident events, it is important for the search team commander to determine the search area in order to secure the Golden Time. Within this period, assistance and treatment to the concerned individual will most likely prevent further injuries and harm. This paper proposes a method to determine the search priority area based on missing persons behavior and missing persons incidents statistics. GIS (Geographic Information System) and MCDM (Multi Criteria Decision Making) are integrated by applying WLC (Weighted Linear Combination) techniques. Missing persons were classified into five types, and their behavioral characteristics were analyzed to extract seven geographic analysis factors. Next, index values were set up for each missing person and element according to the behavioral characteristics, and the raster data generated by multiplying the weight of each element are superimposed to define models to select search priority areas, where each weight is calculated from the AHP (Analytical Hierarchy Process) through a pairwise comparison method obtained from search operation experts. Finally, the model generated in this study was applied to a missing person case through a virtual missing scenario, the priority area was selected, and the behavioral characteristics and topographical characteristics of the missing persons were compared with the selected area. The resulting analysis results were verified by mountain rescue experts as 'appropriate' in terms of the behavior analysis, analysis factor extraction, experimental process, and results for the missing persons.