• Title/Summary/Keyword: accessory protein

Search Result 40, Processing Time 0.038 seconds

Intratesticular Injection of Hypertonic Saline: Non-Invasive Alternative Method for Animal Castration Model

  • Kwak, Byung Kuk;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.17 no.4
    • /
    • pp.435-440
    • /
    • 2013
  • Previous studies, including our own, have demonstrated that the intratesticular injection of hypertonic saline (20%) decreased serum testosterone level which was similar to the surgical castration in the rat, showing the state of chemical castration. In the present study, we further verify the efficacy of this less invasive method as an alternative of surgical orchidectomy in the andrological field. Sterilized 20% saline was directly injected into the adult male rats (750 ${\mu}l$ per testis). The tested rats were divided into 3 groups including intact group (intact), orchidectomy group (ORX) and saline injection group (SAL) after bilateral orchidectomy was performed at the same day of injection. All rats were sacrificed at 4 weeks after injection. The reproductive organs (testes, epididymis, seminal vesicles and prostates) were collected and used for DNA and protein pattern analyses. Also, patho-histological studies on the testes were performed. In contrast to the intact group, similar DNA damages of testis and seminal vesicle were appeared in ORX group and SAL group. The DNA degradations seemed to be the results of necrosis rather than apoptosis. In the protein pattern analysis, all the testing tissues exerted similar patterns in the ORX group and the SAL group compared to the those of intact group. Patho-histological studies revealed that severe degenerative changes in testicular seminiferous tubules and massive infiltration of immune cells in SAL group. The present study confirmed that direct injection of hypertonic saline into the testis caused the equivalent biochemical changes in the accessory sex organs as shown in the orchidectomized animals. These results suggest that hypertonic saline injection model could be a useful castration model which can substitute for surgical castration when its safety is secured through further study in the future.

Differential Effects of Anti-IL-1R Accessory Protein Antibodies on IL-1α or IL-1β-induced Production of PGE2 and IL-6 from 3T3-L1 Cells

  • Yoon, Do-Young;Dinarello, Charles A.
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.562-570
    • /
    • 2007
  • Soluble or cell-bound IL-1 receptor accessory protein (IL-1RAcP) does not bind IL-1 but rather forms a complex with IL-1 and IL-1 receptor type I (IL-1RI) resulting in signal transduction. Synthetic peptides to various regions in the Ig-like domains of IL-1RAcP were used to produce antibodies and these antibodies were affinity-purified using the respective antigens. An anti-peptide-4 antibody which targets domain III inhibited 70% of IL-$1\beta$-induced productions of IL-6 and PGE2 from 3T3-L1 cells. Anti-peptide-2 or 3 also inhibited IL-1-induced IL-6 production by 30%. However, antipeptide-1 which is directed against domain I had no effect. The antibody was more effective against IL-$1\beta$ compared to IL-$1\alpha$. IL-1-induced IL-6 production was augmented by coincubation with PGE2. The COX inhibitor ibuprofen blocked IL-1-induced IL-6 and PGE2 production. These results confirm that IL-1RAcP is essential for IL-1 signaling and that increased production of IL-6 by IL-1 needs the co-induction of PGE2. However, the effect of PGE2 is independent of expressions of IL-1RI and IL-1RAcP. Our data suggest that domain III of IL-1RAcP may be involved in the formation or stabilization of the IL-1RI/IL-1 complex by binding to epitopes on domain III of the IL-1RI created following IL-1 binding to the IL-1RI.

Toxicological Aspects of Carboxylesterases -A Sensitive Biomarker of Organophosphate Toxicity-

  • Satoh, Tetsuo;Suzuki, Satoshi;Hosokawa, Masakiyo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.108-113
    • /
    • 1998
  • Egasyn is accessory protein of ${\beta}$-glucuronidase(${\beta}$-G) in the liver microsomes. Liver microsomal ${\beta}$-G is stabilized within the luminal site of the microsomal vesicles by complexation with egasyn which is one of carboxylesterase isozymes. We investigated the effects of organophosphorus compounds(OPs) such as insecticides on the dissociation of egasyn-${\beta}$-glucuronidase(EG) complex. The EG complex was easily dissociated by administration of OPs, i.e., Fenitrothion, EPN, Phenthionate, and bis-p-nitrophenyl phosphate(BNPP), and resulting ${\beta}$-G dissociated was released into blood, leading to the rapid and transient increase of plasma ${\beta}$-G level with a concomitant decrease of liver microsomal ${\beta}$-G level. In a case of phenthionate treatment, less increase in plasma ${\beta}$-G level was observed, as compared with those of other OPs. This may be explained by a fact that phenthionate was easily hydrolyzed by carboxylesterase. Similarly, carbamate insecticides such as Carbaryl caused rapid increase of plasma ${\beta}$-G level. In contrast, no significant increase of plasma ${\beta}$-G level was observed when pyrethroid insecticides were administered to rats. This is due to a fact that pyrethroids such as Phenthrin and Allethrin were easily hydrolyzed by A-esterase as well as carboxylesterase. On the other hand, addition of OPs to the incubation mixture containing liver microsomes caused the release of ${\beta}$-G from microsomes to the medium. From these in vivo and in vitro data, it is concluded that increase of the plasma ${\beta}$-G level after OPs administration is much more sensitive biomarker than cholinesterase inhibition to acute intoxication of OPs and carbamates.

  • PDF

Gene Analysis Related Energy Metabolism of Leaf Expressed Sequence Tags Database of Korean Ginseng (Panax ginseng C.A. Meyer) (고려인삼(Panax ginseng C.A, Meyer)의 잎 ESTs database에서 Energy 대사 관련 유전자 분석)

  • Lee Jong-Il;Yoon Jae-Ho;Song Won-Seob;Lee Bum-Soo;In Jun-Gyo;Kim Eun-Jeong;Yang Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.19 no.1
    • /
    • pp.174-179
    • /
    • 2006
  • A cDNA library was constructed from leaf samples of 4-year-old Panax ginseng cultured in a field. 3,000 EST from a size selected leaf cDNA library were analyzed. The 349 of 2,896 cDNA clones has related with energy metabolism genes. The 349 known genes were categorized into nine groups according to their functional classification, aerobic respiration(48.4%), accessory proteins of electron transport and membrane associated energy conservation(17.2%), glycolysis and gluconeogenesis(3.4%), electron transport and membrane associated energy conservation(2.9%), respiration(2.0%), glycolysis methylglyoxal bypass(1.7%), metabolism of energy reserves(0.6%) and alcohol fermentation(0.3%).

Activation of Urease Apoprotein of Helicobacter pylori

  • Cho, Myung-Je;Lee, Woo-Kon;Song, Jae-Young;An, Young-Sook;Choi, Sang-Haeng;Choi, Yeo-Jeong;Park, Seong-Gyu;Choi, Mi-Young;Baik, Seung-Chul;Lee, Byung-Sang;Rhee, Kwang-Ho
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.6
    • /
    • pp.533-542
    • /
    • 1999
  • H. pylori produces urease abundantly amounting to 6% of total protein of bacterial mass. Urease genes are composed of a cluster of 9 genes of ureC, ureD, ureA, ureB, ureI, ureE, ureF, ureG, ureH. Production of H. pylori urease in E. coli was studied with genetic cotransformation. Structural genes ureA and ureB produce urease apoprotein in E. coli but the apoprotein has no enzymatic activity. ureC and ureD do not affect urease production nor enzyme activity ureF, ureG, and ureH are essential to produce the catalytically active H. pylori urease of structural genes (ureA and ureB) in E.coli. The kinetics of activation of H. pylori urease apoprotein were examined to understand the production of active H. pylori urease. Activation of H. pylori urease apoprotein, pH dependency, reversibility of $CO_2$ binding, irreversibility of $CO_2$ and $Ni^{2+}$ incorporation, and $CO_2$ dependency of initial rate of urease activity have been observed in vitro. The intrinsic reactivity (ko) for carbamylation of urease apoprotein co expressed with accessory genes was 17-fold greater than that of urease apoprotein expressed without accessory genes. It is concluded that accessory genes function in maximizing the carbamylating deprotonated ${\varepsilon}$-amino group of Lys 219 of urease B subunit and metallocenter of urease apoprotein is supposed to be assembled by reaction of a deprotonated protein side chain with an activating $CO_2$ molecule to generate ligands that facilitate productive nickel binding.

  • PDF

Identification of Hepatitis C Virus Core Domain Inducing Suppression of Allostimulatory Capacity of Dendritic Cells

  • Kim, Ho-Sang;Lee, Jae-Kwon;Yang, In-Ho;Ahn, Jeong-Keun;Oh, Yoon-I;Kim, Chul-Joong;Kim, Young-Sang;Lee, Chong-Kil
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.364-369
    • /
    • 2002
  • Hepatitis C virus (HCV) is remarkably efficient at establishing chronic infection. One of the reasons for this appears to be the suppression of the accessory cell function of professional antigen presenting cells. In the present study, the immunosuppressive activity of HCV protein was examined on dendritic cells (DCs) generated from mouse bone marrow progenitor cells in vitro. We found that the DCs forced to express HCV protein have defective allostimulatory ability. DCs expressing HCV protein were phenotypically indistinguishable from normal DCs. However, they were unable to produce IL-12 effectively when stimulated with lipopolysaccharide. The functional domain of the HCV protein essential for immunosuppression was determined using a series of ${NH_2}-and$ C-terminal deletion mutants of HCV core protein. We found that amino acid residues residing between the 21 st and the 40th residues from the ${NH_2}-terminus$ of HCV core protein are required for immunosuppression. These findings suggest that HCV core protein suppresses the elicitation of protective Th1 responses by the inhibition of IL-12 production by DCs.

Structural and Functional Insight into Proliferating Cell Nuclear Antigen

  • Park, So Young;Jeong, Mi Suk;Han, Chang Woo;Yu, Hak Sun;Jang, Se Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.637-647
    • /
    • 2016
  • Proliferating cell nuclear antigen (PCNA) is a critical eukaryotic replication accessory factor that supports DNA binding in DNA processing, such as DNA replication, repair, and recombination. PCNA consists of three toroidal-shaped monomers that encircle double-stranded DNA. The diverse functions of PCNA may be regulated by its interactions with partner proteins. Many of the PCNA partner proteins generally have a conserved PCNA-interacting peptide (PIP) motif, located at the N- or C- terminal region. The PIP motif forms a 310 helix that enters into the hydrophobic groove produced by an interdomain-connecting loop, a central loop, and a C-terminal tail in the PCNA. Post-translational modification of PCNA also plays a critical role in regulation of its function and binding partner proteins. Structural and biochemical studies of PCNA-protein will be useful in designing therapeutic agents, as well as estimating the outcome of anticancer drug development. This review summarizes the characterization of eukaryotic PCNA in relation to the protein structures, functions, and modifications, and interaction with proteins.

Molecular Topography and Energy Transfer in Solar Energy Harvesting Pigment Proteins (태양에너지를 채취하는 색소단백질들의 분자 토포그라피와 에너지전달현상)

  • Song, Pill-Soon;Jung, Jin
    • Applied Biological Chemistry
    • /
    • v.23 no.1
    • /
    • pp.73-83
    • /
    • 1980
  • The light harvesting pigment proteins of dinoflagellates exhibit essentially 100% efficient energy transfer from carotenoid (peridinin) to chlorophyll a within the antenna pigment complexes. The high efficiency of solar energy harvesing (particularly blue light) for photosynthesis in dinoflagellates is attributable to the unique molecular topography of peridinin and chlorophyll e within the protein crevice. The mechanisms of energy transfer from carotenoids to chlorophyll in higher plants have also been discussed in comparison with the dinoflagellate antenna pigment complexes. As an example of solar energy harvesting, particularly red light, for photosynthesis in algae, the molecular topography and energy transfer in the photosynthetic accessory pigment protein, Chroomonas phycocyanin, have also been discussed.

  • PDF

Formation of DNA-Protein Crosslink at Oxidized Abasic Site Mediated by Human DNA Polymerase Iota and Mitochondrial DNA Polymerase Gamma

  • Son, Mi-Young;Jun, Hyun-Ik;Goo, Sun-Young;Sung, Jung-Suk
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Human genomic DNA is continuously attacked by oxygen radicals originated from cellular metabolic processes and numerous environmental carcinogens. 2-deoxyribonolactone (dL) is a major type of oxidized abasic (AP) lesion implicated in DNA strand scission, mutagenesis, and formation of covalent DNA-protein crosslink (DPC) with DNA polymerase (Pol) ${\beta}$. We show here that human DNA polymerase (Pol)${\iota}$ and mitochondrial $Pol{\gamma}$ give rise to stable DNA-protein crosslink (DPC) formation that is specifically mediated by dL lesion. $Pol{\gamma}$ mediates DPC formation at the incised dL residue by its 5'-deoxyribose-5-phosphate (dRP) lyase activity, while $Pol{\gamma}$ cross links with dL thorough its intrinsic dRP lyase and AP lyase activities. Reactivity in forming dL-mediated DPC was significantly higher with $Pol{\gamma}$ than with $Pol{\iota}$. DPC formation by $Pol{\gamma}$, however, can be reduced by an accessory factor of $Pol{\gamma}$ holoenzyme that may attenuate deleterious effects of crosslink adducts on mitochondrial DNA. Comparative kinetic analysis of DPC formation showed that the rate of DPC formation with either $Pol{\iota}$ or $Pol{\gamma}$ was lower than that with $Pol{\beta}$. These results revealed that the activity of catalytic lyase in DNA polymerases determine the efficiency of DPC formation with dL damages. Irreversible crosslink formation of such DNA polymerases by dL lesions may result in a prolonged strand scission and a suicide of DNA repair proteins, both of which could pose a threat to the genetic and structural integrity of DNA.

  • PDF

cis-Prenyltransferase interacts with a Nogo-B receptor homolog for dolichol biosynthesis in Panax ginseng Meyer

  • Nguyen, Ngoc Quy;Lee, Sang-Choon;Yang, Tae-Jin;Lee, Ok Ran
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.403-410
    • /
    • 2017
  • Background: Prenyltransferases catalyze the sequential addition of isopentenyl diphosphate units to allylic prenyl diphosphate acceptors and are classified as either trans-prenyltransferases (TPTs) or cis-prenyltransferases (CPTs). The functions of CPTs have been well characterized in bacteria, yeast, and mammals compared to plants. The characterization of CPTs also has been less studied than TPTs. In the present study, molecular cloning and functional characterization of a CPT from a medicinal plant, Panax ginseng Mayer were addressed. Methods: Gene expression patterns of PgCPT1 were analyzed by quantitative reverse transcription polymerase chain reaction. In planta transformation was generated by floral dipping using Agrobacterium tumefaciens. Yeast transformation was performed by lithium acetate and heat-shock for $rer2{\Delta}$ complementation and yeast-two-hybrid assay. Results: The ginseng genome contains at least one family of three putative CPT genes. PgCPT1 is expressed in all organs, but more predominantly in the leaves. Overexpression of PgCPT1 did not show any plant growth defect, and its protein can complement yeast mutant $rer2{\Delta}$ via possible protein-protein interaction with PgCPTL2. Conclusion: Partial complementation of the yeast dolichol biosynthesis mutant $rer2{\Delta}$ suggested that PgCPT1 is involved in dolichol biosynthesis. Direct protein interaction between PgCPT1 and a human Nogo-B receptor homolog suggests that PgCPT1 requires an accessory component for proper function.