Browse > Article
http://dx.doi.org/10.4014/jmb.1509.09051

Structural and Functional Insight into Proliferating Cell Nuclear Antigen  

Park, So Young (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Jeong, Mi Suk (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Han, Chang Woo (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Yu, Hak Sun (Department of Parasitology, School of Medicine, Pusan National University)
Jang, Se Bok (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.4, 2016 , pp. 637-647 More about this Journal
Abstract
Proliferating cell nuclear antigen (PCNA) is a critical eukaryotic replication accessory factor that supports DNA binding in DNA processing, such as DNA replication, repair, and recombination. PCNA consists of three toroidal-shaped monomers that encircle double-stranded DNA. The diverse functions of PCNA may be regulated by its interactions with partner proteins. Many of the PCNA partner proteins generally have a conserved PCNA-interacting peptide (PIP) motif, located at the N- or C- terminal region. The PIP motif forms a 310 helix that enters into the hydrophobic groove produced by an interdomain-connecting loop, a central loop, and a C-terminal tail in the PCNA. Post-translational modification of PCNA also plays a critical role in regulation of its function and binding partner proteins. Structural and biochemical studies of PCNA-protein will be useful in designing therapeutic agents, as well as estimating the outcome of anticancer drug development. This review summarizes the characterization of eukaryotic PCNA in relation to the protein structures, functions, and modifications, and interaction with proteins.
Keywords
PCNA; DNA; structure; function; interaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Prelich G, Tan CK, Kostura M, Mathews MB, So AG, Downey KM, Stillman B. 1987. Functional identity of proliferating cell nuclear antigen and a DNA polymerase-δauxiliary protein. Nature 326: 517-520.   DOI
2 Punchihewa C, Inoue A, Hishiki A, Fujikawa Y, Connelly M, Evison B, et al. 2012. Identification of small molecule proliferating cell nuclear antigen (PCNA) inhibitor that disrupts interactions with PIP-box proteins and inhibits DNA replication. J. Biol. Chem. 287: 14289-14300.   DOI
3 Riva F, Savio M, Cazzalini O, Stivala LA, Scovassi IA, Cox LS, et al. 2004. Distinct pools of proliferating cell nuclear antigen associated to DNA replication sites interact with the p125 subunit of DNA polymerase δ or DNA ligase I. Exp. Cell Res. 293: 357-367.   DOI
4 Sakurai S, Kitano K, Yamaguchi H, Hamada K, Okada K, Fukuda K, et al. 2005. Structural basis for recruitment of human flap endonuclease 1 to PCNA. EMBO J. 24: 683-693.   DOI
5 Schurtenberger P, Egelhaaf SU, Hindges R, Maga G, Majka ZO, May RP, et al. 1998. The solution structure of functionally active human proliferating cell nuclear antigen determined by small-angle neutron scattering. J. Mol. Biol. 275: 123-132.   DOI
6 Scott M, Bonnefin P, Vieyra D, Boisvert FM, Young D, Bazett-Jones DP, Riabowol K. 2001. UV-induced binding of ING1 to PCNA regulates the induction of apoptosis. J. Cell Sci. 114: 3455-3462.
7 Sharma NM, Kochenova OV, Shcherbakova PV. 2011. The non-canonical protein binding site at the monomer-monomer interface of yeast proliferating cell nuclear antigen (PCNA)regulates the Rev1-PCNA interaction and Polζ/Rev1-dependent translesion DNA synthesis. J. Biol. Chem. 286: 33557-33566.   DOI
8 Shcherbakova PV, Fijalkowska IJ. 2006. Translesion synthesis DNA polymerases and control of genome stability. Front. Biosci. 11: 2496-2517.   DOI
9 Shimazaki N, Yazaki T, Kubota T, Sato A, Nakamura A, Kurei S, et al. 2005. DNA polymerase lambda directly binds to proliferating cell nuclear antigen through its confined C-terminal region. Genes Cells 10: 705-715.   DOI
10 Soria G, Gottifredi V. 2010. PCNA-coupled p21 degradation after DNA damage: the exception that confirms the rule? DNA Repair 9: 358-364.   DOI
11 Stelter P, Ulrich HD. 2003. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425: 188-191.   DOI
12 Stoimenov I, Helleday T. 2009. PCNA on the crossroad of cancer. Biochem. Soc. Trans. 37: 605-613.   DOI
13 Strzalka W, Oyama T, Tori K, Morikawa K. 2009. Crystal structures of the Arabidopsis thaliana proliferating cell nuclear antigen 1 and 2 proteins complexed with the human p21 C-terminal segment. Protein Sci. 18: 1072-1080.   DOI
14 Strzalka W, Ziemienowicz A. 2011. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann. Bot. 107: 1127-1140.   DOI
15 Tan CK, Castillo C, So AG, Downey KM. 1986. An auxiliary protein for DNA polymerase-delta from fetal calf thymus. J. Biol. Chem. 261: 12310-12316.
16 Terry LA, Boyd J, Alcorta D, Lyon T, Solomon G, Hannon G, et al. 1996. Mutational analysis of the p21/WAF1/CIP1/SDI1 coding region in human tumor cell lines. Mol. Carcinog. 16: 221-228.   DOI
17 Thakur S, Feng X, Qiao Shi Z, Ganapathy A, Kumar Mishra M, Atadja P, et al. 2012. ING1 and 5-azacytidine act synergistically to block breast cancer cell growth. PLoS One 7: e43671.   DOI
18 Tsurimoto T. 1999. PCNA binding proteins. Front. Biosci. 4: D849-D858.   DOI
19 Ulrich HD, Takahashi T. 2013. Readers of PCNA modifications. Chromosoma 122: 259-274.   DOI
20 Tuteja N, Singh MB, Misra MK, Bhalla PL, Tuteja R. 2001. Molecular mechanisms of DNA damage and repair: progress in plants. Crit. Rev. Biochem. Mol. Biol. 36: 337-397.   DOI
21 Ulrich HD. 2009. Regulating post-translational modifications of the eukaryotic replication clamp PCNA. DNA Repair 8: 461-469.   DOI
22 Umar A, Buermeyer AB, Simon JA, Thomas DC, Clark AB, Liskay RM, Kunkel TA. 1996. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87: 65-73.   DOI
23 Unk I, Hajdú I, Fátyol K, Hurwitz J, Yoon JH, Prakash L, et al. 2008. Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proc. Natl. Acad. Sci. USA 105: 3768-3773.   DOI
24 Vairapandi M, Azam N, Balliet AG, Hoffman B, Liebermann DA. 2000. Characterization of MyD118, Gadd45, and PCNA interacting domains: PCNA impedes MyD/Gadd mediated negative growth control. J. Biol. Chem. 275: 16810-16819.   DOI
25 Waters LS, Minesinger BK, Wiltrout ME, D’Souza S, Woodruff RV, Walker GC. 2009. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol. Mol. Biol. Rev. 73: 134-154.   DOI
26 Waga S, Stillman B. 1998. The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem. 67: 721-751.   DOI
27 Wang K, Shi Z, Zhang M, Cheng D. 2013. Structure of PCNA from Drosophila melanogaster. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 69: 387-392.   DOI
28 Warbrick E. 2000. The puzzle of PCNA’s many partners. Bioessays 22: 997-1006.   DOI
29 Wang SC, Nakajima Y, Yu YL, Xia W, Chen CT, Yang CC, et al. 2006. Tyrosine phosphorylation controls PCNA function through protein stability. Nat. Cell Biol. 8: 1359-1368.   DOI
30 Wang SC. 2014. PCNA: a silent housekeeper or a potential therapeutic target? Trends Pharmacol. Sci. 35: 178-186.   DOI
31 Winter JA, Bunting KA. 2012. Rings in the extreme: PCNA interactions and adaptations in the archaea. Archaea 2012: 1-9.
32 Wood RD, Mitchell M, Sgouros J, Lindahl T. 2001. Human DNA repair genes. Science 291: 1284-1289.   DOI
33 Xiong Y, Zhang H, Beach D. 1992. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71: 505-514.   DOI
34 Xu H, Zhang P, Liu L, Lee MY. 2001. An ovel PCNA-binding motif identified by the panning of a random peptide display library. Biochemistry 40: 4512-4520.   DOI
35 Zheleva DI, Zhelev NZ, Fischer PM, Duff SV, Warbrick E, Blake DG, Lane DP. 2000. A quantitative study of the in vitro binding of the C-terminal domain of p21 to PCNA: affinity, stoichiometry, and thermodynamics. Biochemistry 39: 7388-7397.   DOI
36 Zhang H, Xiong Y, Beach D. 1993. Proliferating cell nuclear antigen and p21 are components of multiple cell cycle kinase complexes. Mol. Biol. Cell 4: 897-906.   DOI
37 Zheng L, Shen B. 2011. Okazaki fragment maturation:nucleases take centre stage. J. Mol. Cell Biol. 3: 23-30.   DOI
38 Bowman GD, O’Donnell M, Kuriyan J. 2004. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature 429: 724-730.   DOI
39 Zhu Q, Chang Y, Yang J, Wei Q. 2014. Post-translational modifications of proliferating cell nuclear antigen: a key signal integrator for DNA damage response (Review). Oncol. Lett. 7: 1363-1369.   DOI
40 Armstrong AA, Mohideen F, Lima CD. 2012. Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature 483: 59-63.   DOI
41 Bray CM, West CE. 2005. DNA repair mechanisms in plants:crucial sensors and effectors for the maintenance of genome integrity. New Phytol. 168: 511-528.   DOI
42 Bravo R, Fey SJ, Bellatin J, Larsen PM, Celis JE. 1981. Identification of a nuclear polypeptide (“cyclin”) whose relative proportion is sensitive to changes in the rate of cell proliferation and to transformation. Prog. Clin. Biol. Res. 85:235-248.
43 Bravo R, Frank R, Blundell PA, Macdonald-Bravo H. 1987. Cyclin/PCNA is the auxiliary protein of DNA polymerase-δ. Nature 326: 511-528.   DOI
44 Bruning JB, Shamoo Y. 2004. Structural and thermodynamic analysis of human PCNA with peptides derived from DNA polymerase-delta p66 subunit and flap endonuclease-1. Structure 12: 2209-2219.   DOI
45 Burgers PM, Koonin EV, Bruford E, Blanco L, Burtis KC, Christman MF, et al. 2001. Eukaryotic DNA polymerases:proposal for a revised nomenclature. J. Biol. Chem. 276: 43487-43490.   DOI
46 Burgers PM. 2009. Polymerase dynamics at the eukaryotic DNA replication fork. J. Biol. Chem. 284: 4041-4045.   DOI
47 Castrec B, Rouillon C, Henneke G, Flament D, Querellou J, Raffin JP. 2009. Binding to PCNA in euryarchaeal DNA replication requires two PIP motifs for DNA polymerase D and one PIP motif for DNA polymerase β. J. Mol. Biol. 394:209-218.   DOI
48 Chapados BR, Hosfield DJ, Han S, Qiu J, Yelent B, Shen B, Tainer JA. 2004. Structural basis for FEN-1 substrate specificity and PCNA-mediated activation in DNA replication and repair. Cell 116: 39-50.   DOI
49 Chen C, Merrill BJ, Lau PJ, Holm C, Kolodner RD. 1999. Saccharomyces cerevisiae pol30 (proliferating cell nuclear antigen) mutations impair replication fidelity and mismatch repair. Mol. Cell. Biol. 19: 7801-7815.   DOI
50 Chang DJ, Cimprich KA. 2009. DNA damage tolerance:when it’s OK to make mistakes. Nat. Chem. Biol. 5: 82-90.   DOI
51 Chen IT, Akamatsu M, Smith ML, Lung FD, Duba D, Roller PP, et al. 1996. Characterization of p21Cip1/Waf1 peptide domains required for cyclin E/Cdk2 and PCNA interaction. Oncogene 12: 595-607.
52 Chen X, Patel TP, Simirskii VI, Duncan MK. 2008. PCNA interacts with Prox1 and represses its transcriptional activity. Mol. Vis. 14: 2076-2086.
53 De Biasio A, Blanco FJ. 2013. Proliferating cell nuclear antigen structure and interactions: too many partners for one dancer. Adv. Protein Chem. Struct. Biol. 91: 1-36.
54 Dotto GP. 2000. p21 WAF1/Cip1: more than a break to the cell cycle? Biochim. Biophys. Acta 1471: M43-M56.
55 Freudenthal BD, Gakhar L, Ramaswamy S, Washington MT. 2010. Structure of monoubiquitinated PCNA and implications for translesion synthesis and DNA polymerase exchange. Nat. Struct. Mol. Biol. 17: 479-484.   DOI
56 Freudenthal BD, Brogie JE, Gakhar L, Kondratick CM, Washington MT. 2011. Crystal structure of SUMO-modified proliferating cell nuclear antigen. J. Mol. Biol. 406: 9-17.   DOI
57 Guzinska-Ustymowicsz K, Pryczynicz A, Kemona A, Czyzewska J. 2009. Correlation between proliferation markers:PCNA, Ki-67, MCM-2 and antiapoptotic protein Bcl-2 in colorectal cancer. Anticancer Res. 29: 3049-3052.
58 Freudenthal BD, Gakhar L, Ramaswamy S, Washington MT. 2009. A charged residue at the subunit interface of PCNA promotes trimer formation by destabilizing alternate subunit interactions. Acta Crystallogr. D Biol. Crystallogr. 65: 560-566.   DOI
59 Gary R, Ludwig DL, Cornelius HL, MacInnes MA, Park MS. 1997. The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21. J. Biol. Chem. 272: 24522-24529.   DOI
60 Gulbis JM, Kelman Z, Hurwitz J, O’Donnell M, Kuriyan J. 1996. Structure of the C-terminal region of p21 WAF1/CIP1complexed with human PCNA. Cell 87: 297-306.   DOI
61 Haracska L, Johnson RE, Unk I, Phillips B, Hurwitz J, Prakash L, Prakash S. 2001. Physical and functional interactions of human DNA polymerase η with PCNA. Mol. Cell. Biol. 21: 7199-7206.   DOI
62 Hingorani MM, O’Donnell M. 2000. Sliding clamps: a (tail)ored fit. Curr. Biol. 10: R25-R29.   DOI
63 Hishiki A, Hashimoto H, Hanafusa T, Kamei K, Ohashi E, Shimizu T, et al. 2009. Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen. J. Biol. Chem. 284: 10552-10560.   DOI
64 Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135-141.   DOI
65 Kelman Z, O’Donnell M. 1995. Structural and functional similarities of prokaryotic and eukaryotic DNA polymerase sliding clamps. Nucleic Acids Res. 23: 3613-3620.   DOI
66 Hoelz DJ, Arnold RJ, Dobrolecki LE, Abdel-Aziz W, Loehrer AP, Novotny MV, et al. 2006. The discovery of labile methyl esters on proliferating cell nuclear antigen by MS/MS. Proteomics 6: 4808-4816.   DOI
67 Jónsson ZO, Hindges R, Hübscher U. 1998. Regulation of DNA replication and repair proteins through interaction with the front side of proliferating cell nuclear antigen. EMBO J. 17: 2412-2425.   DOI
68 Kannouche PL, Wing J, Lehmann AR. 2004. Interaction of human DNA polymerase η with monoubiquitinated PCNA:a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14: 491-500.   DOI
69 Kelman Z. 1997. PCNA: structure, functions and interactions. Oncogene 14: 629-640.   DOI
70 Ko R, Bennett SE. 2005. Physical and functional interaction of human nuclear uracil-DNA glycosylase with proliferating cell nuclear antigen. DNA Repair 4: 1421-1431.   DOI
71 Kong XP, Onrust R, O’Donnell M, Kuriyan J. 1992. Three-dimensional structure of the β subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69: 425-437.   DOI
72 Kontopidis G, Wu SY, Zheleva DI, Taylor P, McInnes C, Lane DP, et al. 2005. Structural and biochemical studies of human proliferating cell nuclear antigen complexes provide a rationale for cyclin association and inhibitor design. Proc. Natl. Acad. Sci. USA 102: 1871-1876.   DOI
73 Luo Y, Hurwitz J, Massagué J. 1995. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature 375: 159-161.   DOI
74 Koundrioukoff S, Jónsson ZO, Hasan S, de Jong RN, van der Vliet PC, Hottiger MO, Hübscher U. 2000. A direct interaction between proliferating cell nuclear antigen (PCNA)and Cdk2 targets PCNA-interacting proteins for phosphorylation. J. Biol. Chem. 275: 22882-22887.   DOI
75 Krishna TS, Kong XP, Gary S, Burgers PM, Kuriyan J. 1994. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79: 1233-1243.   DOI
76 Lee SD, Alani E. 2006. Analysis of interactions between mismatch repair initiation factors and the replication processivity factor PCNA. J. Mol. Biol. 355: 175-184.   DOI
77 Maga G, Hübscher U. 2003. Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J. Cell Sci. 116: 3051-3060.   DOI
78 Mailand N, Gibbs-Seymour I, Bekker-Jensen S. 2013. Regulation of PCNA-protein interactions for genome stability. Nat. Rev. Mol. Cell Biol. 14: 269-282.   DOI
79 Majka J, Burgers PM. 2004. The PCNA-RFC families of DNA clamps and clamp loaders. Prog. Nucleic Acid Res. Mol. Biol. 78: 227-260.
80 Mathews MB, Bernstein RM, Franza BR, Garrels JI. 1984. Identity of the proliferating cell nuclear antigen and cyclin. Nature 309: 374- 376.   DOI
81 Matsumiya S, Ishino Y, Morikawa K. 2001. Crystal structure of an archaeal DNA sliding clamp: proliferating cell nuclear antigen from Pyrococcus furiosus. Protein Sci. 10: 17-23.   DOI
82 Moldovan GL, Pfander B, Jentsch S. 2007. PCNA, the maestro of the replication fork. Cell 129: 665-679.   DOI
83 Matsumiya S, Ishino S, Ishino Y, Morikawa K. 2002. Physical interaction between proliferating cell nuclear antigen and replication factor C from Pyrococcus furiosus. Genes Cells 7: 911-922.   DOI
84 McNally R, Bowman GD, Goedken ER, O’Donnell M, Kuriyan J. 2010. Analysis of the role of PCNA-DNA contacts during clamp loading. BMC Struct. Biol. 10: 3.   DOI
85 Miyachi K, Fritzler MJ, Tan EM. 1978. Autoantibody to a nuclear antigen in proliferating cells. J. Immunol. 121: 2228-2234.
86 Moskowitz NK, Borao FJ, Dardashti O, Cohen HD, Germino FJ. 1995. The amino terminus of Cdk2 binds p21. Oncol. Res. 8: 343-352.
87 Naryzhny SN. 2008. Proliferating cell nuclear antigen: a proteomics view. Cell. Mol. Life Sci. 65: 3789-3808.   DOI
88 Ollivierre JN, Silva MC, Sefcikova J, Beuning PJ. 2011. Polymerase switching in response to DNA damage, pp. 241-292. In Williams MC, Maher III LJ (eds.). Biophysics of DNA-Protein Interactions: From Single Molecules to Biological Systems. Springer-Verlag, Berlin.
89 Pan M, Kelman L, Kelman Z. 2011. The archaeal PCNA proteins. Biochem. Soc. Trans. 39: 20.   DOI
90 Parsons JL, Nicolay NH, Sharma RA. 2013. Biological and therapeutic relevance of nonreplicative DNA polymerases to cancer. Antioxid. Redox Signal. 18: 851-873.   DOI
91 Prakash S, Johnson RE, Prakash L. 2005. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem. 74: 317-353.   DOI