• Title/Summary/Keyword: access delay

Search Result 932, Processing Time 0.024 seconds

Analysis of Response Characteristics of the CAN-Based Feedback Control System Considering the Network Delay Time

  • Jeon, Jong-Man;Kim, Dae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.119.3-119
    • /
    • 2001
  • When building a network-based real-time control system, a network-induced delay time should be surly considered for real time schedulability to be guaranteed. The network delay time on end-to-end communication has been analyzed theoretically and modeled mathematically from many previous works. There also exist any other delay element not considered before. In this paper, the remote feedback control system using the CAN protocol is proposed to control three axes´ manipulator arm and the application layer of CAN is modeled to analyze the delay elements defined by three types of time delay: Software delay time, Controller delay time, and Access delay time, in details. The analyzed results are used as an important component to determine PID gains of the proposed system. The effect of the delay time on the control performance is evaluated by com paring the response characteristics of the control system through simulation.

  • PDF

Study on Dynamic Priority Collision Resolution Algorithm in HFC-CATV Network (HFC-CATV 망에서 동적 우선순위 충돌해결알고리즘에 관한 연구)

  • Lee, Su-Youn;Chung, Jin-Wook
    • The KIPS Transactions:PartC
    • /
    • v.10C no.5
    • /
    • pp.611-616
    • /
    • 2003
  • Recently, the HFC-CATV network stand in a substructure of superhighway information network. Because of sharing up to 500 of subscribes, the Collision Resolution Algorithm needs in the upstream channel of HFC-CATV network. In order to provide Quality of Service (QoS) to users with real-time data such as voice, video and interactive service, the research of Collision Resolution Algorithm must include an effective priority scheme. In IEEE 802.14, the Collision Resolution Algorithm has high request delay because of static PNA(Priority New Access) slots structure and different priority traffics with the same probability. In order to resolve this problem, this paper proposed dynamic priority collision resolution algorithm with ternary tree algorithm. It has low request delay according to an increase of traffic load because high priority traffic first resolve and new traffic content with different probability. In the result of the simulation, it demonstrated that the proposed algorithm needs lower request delay than that of ternary tree algorithm with static PNA slots structure.

Resource Allocation Method in High-Rate Wireless Personal Area Networks (고속 무선 PAN에서의 자원 할당 방식)

  • Kim, Byung-Seo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.39-45
    • /
    • 2008
  • High-Rate Wireless Personal Area Networks (HR-WPANs) in IEEE 802.15.3 standard use a TIme Devision Multiple Access (TDMA) protocol to support isochronous traffic. Isochronous traffic requires a delay-bounded service. However, the HR-WPAN standard suffers from long access delay and association delay. In this paper, we propose an enhanced MAC protocol for the delay-bounded traffic. This proposed protocol provides a way that a central node is able to collect traffic status on all member nodes. Furthermore, by utilizing the information, a scheduling algorithm is also proposed in order to synchronize the instant of a packet transmission with that of the packet arrival. With the proposed protocol and algorithm, the delay of access and association can be reduced. Performance analysis is carried out and the significant performance enhancement is observed.

  • PDF

Design and Performance evaluation of Fuzzy-based Framed Random Access Controller ($F^2RAC$) for the Integration of Voice ad Data over Wireless Medium Access Control Protocol (프레임 구조를 갖는 무선 매체접속제어 프로토콜 상에서 퍼지 기반의 음성/데이터 통합 임의접속제어기 설계 및 성능 분석)

  • 홍승은;최원석;김응배;강충구;임묘택
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.189-192
    • /
    • 2000
  • This paper proposes a fuzzy-based random access controller with a superimposed frame structure (F$^2$RAC) fur voice/data-integrated wireless networks. F$^2$RAC adopts mini-slot technique for reducing contention cost, and these mini-slots of which number may dynamically vary from one frame to the next as a function of the traffic load are further partitioned into two regions for access requests coming from voice and data traffic with their respective QoS requirements. And F$^2$RAC is designed to properly determine the access regions and permission probabilities for enhancing the data packet delay while ensuring the voice packet dropping probability constraint. It mainly consists of the estimator with Pseudo-Bayesian algorithm and fuzzy logic controller with Sugeno-type of fuzzy rules. Simulation results prove that F$^2$RAC can guarantee QoS requirement of voice and provide the highest throughput efficiency and the smallest data packet delay amongst the different alternatives including PRMA[1], IPRMA[2], and SIR[3].

  • PDF

The study on effective PDV control for IEE1588 (초소형 기지국에서 타이밍 품질 향상을 위한 PDV 제어 방안)

  • Kim, Hyun-Soo;Shin, Jun-Hyo;Kim, Jung-Hun;Jeong, Seok-Jong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.275-280
    • /
    • 2009
  • Femtocells are viewed as a promising option for mobile operators to improve coverage and provide high-data-rate services in a cost-effective manner Femtocells can be used to serve indoor users, resulting in a powerful solution for ubiquitous indoor and outdoor coverage. TThe frequency accuracy and phase alignment is necessary for ensuring the quality of service (QoS) forapplications such as voice, real-time video, wireless hand-off, and data over a converged access medium at the femtocell. But, the GPS has some problem to be used at the femtocell, because it is difficult to set-up, depends on the satellite condition, and very expensive. The IEEE 1588 specification provides a low-cost means for clock synchronisation over a broadband Internet connection. The Time of Packet (ToP) specified in IEEE 1588 is able to synchronize distributed clocks with an accuracy of less than one microsecond in packet networks. However, the timing synchronization over packet switched networks is a difficult task because packet networks introduce large and highly variable packet delays. This paper proposes an enhanced filter algorithm to reduce ths packet delay variation effects and maintain ToP slave clock synchronization performance. The results are presented to demonstrate in the intra-networks and show the improved performance case when the efficient ToP filter algorithm is applied.

  • PDF

Shared-medium Access Control Protocol for the ATM Access Network - Part II : Performance Analysis of the DMR-II Protocol - (ATM 액세스망을 위한 공유매체 접속 제어 프로토콜 - II부 : DMR-II 프로토콜의 성능분석-)

  • 황민태;김장경;이정태
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.3
    • /
    • pp.389-399
    • /
    • 1998
  • The DMR-II shared-medium access control protocol was developed for the ATM access network users to supper the isochronous traffic and the non-isochronous traffic simultaneously under the bandwidth-skating environment. In this paper we analyze the performance of the DMR-II protocol by using both the analytical analysis and the simulation method. Under the ATM access network environment, the performance analysis result shows that the DMR-II protocol maintains the delay variation of the isochronous traffic beyond the threshold value, and satisfies the delay time criteria of the non-isochronous traffic by supporting the priority service. Moreover the result shows high network utilization over 130% due to the destination release mechanism of the DMR-II protocol.

  • PDF

A Novel WBAN MAC protocol with Improved Energy Consumption and Data Rate

  • Rezvani, Sanaz;Ghorashi, S. Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2302-2322
    • /
    • 2012
  • Wireless Body Area Networks (WBANs) are introduced as an enabling technology in tele-health for patient monitoring. Designing an efficient Medium Access Control (MAC) protocol is the main challenge in WBANs because of their various applications and strict requirements such as low level of energy consumption, low transmission delay, the wide range of data rates and prioritizing emergency data. In this paper, we propose a new MAC protocol to provide different requirements of WBANs targeted for medical applications. The proposed MAC provides an efficient emergency response mechanism by considering the correlation between medical signals. It also reduces the power consumption of nodes by minimizing contention access, reducing the probability of the collision and using an efficient synchronization algorithm. In addition, the proposed MAC protocol increases the data rate of the nodes by allocating the resources according to the condition of the network. Analytical and simulation results show that the proposed MAC protocol outperforms IEEE 802.15.4 MAC protocol in terms of power consumption level as well as the average response delay. Also, the comparison results of the proposed MAC with IEEE 802.15.6 MAC protocol show a tradeoff between average response delay and medical data rate.

A Model for Analyzing the Performance of Wireless Multi-Hop Networks using a Contention-based CSMA/CA Strategy

  • Sheikh, Sajid M.;Wolhuter, Riaan;Engelbrecht, Herman A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2499-2522
    • /
    • 2017
  • Multi-hop networks are a low-setup-cost solution for enlarging an area of network coverage through multi-hop routing. Carrier sense multiple access with collision avoidance (CSMA/CA) is frequently used in multi-hop networks. Multi-hop networks face multiple problems, such as a rise in contention for the medium, and packet loss under heavy-load, saturated conditions, which consumes more bandwidth due to re-transmissions. The number of re-transmissions carried out in a multi-hop network plays a major role in the achievable quality of service (QoS). This paper presents a statistical, analytical model for the end-to-end delay of contention-based medium access control (MAC) strategies. These strategies schedule a packet before performing the back-off contention for both differentiated heterogeneous data and homogeneous data under saturation conditions. The analytical model is an application of Markov chain theory and queuing theory. The M/M/1 model is used to derive access queue waiting times, and an absorbing Markov chain is used to determine the expected number of re-transmissions in a multi-hop scenario. This is then used to calculate the expected end-to-end delay. The prediction by the proposed model is compared to the simulation results, and shows close correlation for the different test cases with different arrival rates.

A New Dynamic Bandwidth Assigmnent Algorithm for Ethernet-PON (Ethernet-PON을 위한 새로운 동적 대역 할당 알고리즘)

  • Jang, Seong-Ho;Jang, Jong-Wook
    • The KIPS Transactions:PartC
    • /
    • v.10C no.4
    • /
    • pp.441-446
    • /
    • 2003
  • Earlier efforts on optical access concentrated on the design of PONs for the collection and distribution portion of the access network. The PON architecture is very simple but it requires a MAC protocol for control of upstream traffic. The MAC protocol must support QoS (Quality of Service) administration function by various traffic class, efficient dynamic bandwidth assignment function, CDV (Ceil Delay Variation) minimization function etc. This paper proposes a dynamic bandwidth assignment algorithm of the MAC protocol for a broadband access network using an Ethernet Passive Optical Network supporting various traffic class. We compare our proposed with MDRR algorithm using simulation, and confirmed that our proposed Request-Counter algorithm produces shorter average cell delay.

Performance Evaluation of GFC Protocol Based on HMR with Dynamic Quota Allocation (동적 쿼타할당방식 HMR을 적용한 GFC 프로토콜의 성능평가)

  • 두소영;전병천;김대영;김태균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.7
    • /
    • pp.1256-1271
    • /
    • 1994
  • In this paper a GFC protocol based on HMR(High-speed Multimedia Ring) with a dynamic quota allocation is proposed and the performance of proposed protocol is evaluated by simulation. The HMR a medium access protocol proposed for Gbit ATM-LAN, can be applied to the GFC protocol without any modification because it uses only 4 bits for medium access of several topologies such as bus, ring and stared-bus, and priority control for satisfaction of different QoS(Quality of Service) requirements. The quota allocation method of HMR called static quota allocation has a problem of excessive access delay for the traffic with high burstness. In this paper a dynamic quota allocation method which allocates quota to the nodes according to the queue length is proposed and the performance of HMR with dynamic quota allocation is evaluated by seven simulation scenarios of CCITT. The HMR with proposed method shows better shows better access delay characteristics than the HMR with static quota allocation. Also the simulation results show that access delay performance of HMR is better than that of ATMR proposed by Japan and is similar to that of DQDB proposed by Australia.

  • PDF