• Title/Summary/Keyword: acceptor reaction

Search Result 160, Processing Time 0.03 seconds

Synthesis of Glycosides by Transglycosylation of α-Amylase from Starch (전분으로부터 α-amylase에 의한 배당체의 합성)

  • Park, Jong Yi;Lee, Tae Ho
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.137-143
    • /
    • 1998
  • Glycosides were synthesized using transglycosylation reaction of amylase in water system. The glycosides synthesized in water phase by a-amylase with starch as a glycosyl donor and benzylalcohol as an acceptor were identified as benzylalcohol-${\alpha}$-glucoside (BG) and benzylalcohol-${\alpha}$-maltoside (BM) of which one molecule of benzylalcohol was bound to 1-OH of glucose. The final products were BG in reaction system of pH 5.0, and BM in that of pH 8.0. The transglycosylation reaction by ${\alpha}$-amylase were carried out in water system containing 50 mg starch, 50 mg benzylalcohol, and 10 units enzyme at $30-35^{\circ}C$ for 3 days. The synthesized BG was hydrolyzed to glucose and benzylalcohol by ${\alpha}$-glucosidase, while ${\alpha}$-amylase hydrolyzed BM to glucose and benzylalcohol-${\alpha}$-glucoside in pH 5.0. Maltotriose resemble structurally to BM was rapidly hydrolyzed to glucose and maltose by ${\alpha}$-amylase at pH 5.0, being slightly hydrolyzed at pH 8.0, but not transglycosylated in present of benzylalcohol.

  • PDF

Sustainable Production of Dihydroxybenzene Glucosides Using Immobilized Amylosucrase from Deinococcus geothermalis

  • Lee, Hun Sang;Kim, Tae-Su;Parajuli, Prakash;Pandey, Ramesh Prasad;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1447-1456
    • /
    • 2018
  • The amylosucrase encoding gene from Deinococcus geothermalis DSM 11300 (DgAS) was codon-optimized and expressed in Escherichia coli. The enzyme was employed for biosynthesis of three different dihydroxybenzene glucosides using sucrose as the source of glucose moiety. The reaction parameters, including temperature, pH, and donor (sucrose) and acceptor substrate concentrations, were optimized to increase the production yield. This study demonstrates the highest ever reported molar yield of hydroquinone glucosides 325.6 mM (88.6 g/l), resorcinol glucosides 130.2 mM (35.4 g/l) and catechol glucosides 284.4 mM (77.4 g/l) when 400 mM hydroquinone, 200 mM resorcinol and 300 mM catechol, respectively, were used as an acceptor substrate. Furthermore, the use of commercially available amyloglucosidase at the end of the transglycosylation reaction minimized the gluco-oligosaccharides, thereby enhancing the target productivity of mono-glucosides. Moreover, the immobilized DgAS on Amicogen LKZ118 beads led to a 278.4 mM (75.8 g/l), 108.8 mM (29.6 g/l) and 211.2 mM (57.5 g/l) final concentration of mono-glycosylated product of hydroquinone, catechol and resorcinol at 35 cycles, respectively, when the same substrate concentration was used as mentioned above. The percent yield of the total glycosides of hydroquinone and catechol varied from 85% to 90% during 35 cycles of reactions in an immobilized system, however, in case of resorcinol the yield was in between 65% to 70%. The immobilized DgAS enhanced the efficiency of the glycosylation reaction and is therefore considered effective for industrial application.

Enzymatic Synthesis of β-Glucosylglycerol and Its Unnatural Glycosides Via β-Glycosidase and Amylosucrase

  • Jung, Dong-Hyun;Seo, Dong-Ho;Park, Ji-Hae;Kim, Myo-Jung;Baek, Nam-In;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.562-570
    • /
    • 2019
  • ${\beta}$-Glucosylglycerol (${\beta}-GG$) and their derivatives have potential applications in food, cosmetics and the healthcare industry, including antitumor medications. In this study, ${\beta}-GG$ and its unnatural glycosides were synthesized through the transglycosylation of two enzymes, Sulfolobus shibatae ${\beta}$-glycosidase (SSG) and Deinococcus geothermalis amylosucrase (DGAS). SSG catalyzed a transglycosylation reaction with glycerol as an acceptor and cellobiose as a donor to produce 56% of ${\beta}-GGs$ [${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol and ${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}2$)-$\text\tiny{D}$-glycerol]. In the second transglycosylation reaction, ${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol was used as acceptor molecules of the DGAS reaction. As a result, 61% of ${\alpha}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}4$)-${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol and 28% of ${\alpha}$-$\text\tiny{D}$-maltopyranosyl-($1{\rightarrow}4$)-${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol were synthesized as unnatural glucosylglycerols. In conclusion, the combined enzymatic synthesis of the unnatural glycosides of ${\beta}-GG$ was established. The synthesis of these unnatural glycosides may provide an opportunity to discover new applications in the biotechnological industry.

Modification of Acetobacter xylinum Bacterial Cellulose Using Dextransucrase and Alternansucrase

  • Kim, Do-Man;Kim, Young-Min;Park, Mi-Ran;Park, Don-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.704-708
    • /
    • 1999
  • In addition to catalyzing the synthesis of glucan from sucrose as a primary reaction, glucansucrase also catalyzes the transfer of glucose from sucrose to other carbohydrates that are present or are added to the reaction digest. Using dextransucrase and altemansucrase, prepared from Leuconostoc mesenteroides B-742CBM and B-1355C, respectively, we modified the bacterial cellulose in Acetobacter xylinum ATCC10821 culture, and then produced a characteristic cellulose that is soluble and has a new structure. There were also some partially modified insoluble cellulose and oligosaccharides in the modification culture. After methylation and following acid hydrolysis of both the soluble and insoluble glucans, there were ($1{\rightarrow}4$) as well as ($1{\rightarrow}6$) and ($1{\rightarrow}3$) glycosidic linkages in the soluble glucan.

  • PDF

Phosphorolytic Pathway in Cellulose Degradation

  • Kitaoka, Motomitsu
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.179-182
    • /
    • 2001
  • Two intracellular enzymes, cellobiose phosphorylase (CBP) and cellodextrin phosphorylase (CDP) are involved in the phosphorolytic pathway in cellulose degradation. Those enzymes are considered to be useful in syntheses of oligosaccharides because the reactions are reversible. CBP from Cellvibrio gilvus and CDP from Clostridium thermocellum YM-4 were cloned and over-expressed in Escharichia coli. Both the enzyme reactions showed ordered bi bi mechanism. Acceptor specificity of CBP in the reverse reaction was determined. Several $\beta$-l,4-glucosyl disaccharides were synthesized by using the reaction. A new substrate inhibition pattern, competitive substrate inhibition, was also found in the reverse reaction of CBP Cellobiose was produced from sucrose at a high yield by a combined action of three enzymes including CBP

  • PDF

Ab Initio Study of Mechanism of Forming Spiro-Heterocyclic Ring Compound Involving Si and Ge from Dichlorosilylene Germylidene (Cl2Si-Ge:) and Acetone

  • Liu, Dongting;Ji, Hua;Lu, Xiuhui
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4079-4083
    • /
    • 2012
  • The mechanism of the cycloaddition reaction between singlet state dichlorosilylene germylidene ($Cl_2Si=Ge:$) and acetone has been investigated with B3LYP/6-$31G^*$ and B3LYP/6-$31G^{**}$ method, from the potential energy profile, we predict that the reaction has one dominant reaction pathway. The presented rule of the reaction is that the two reactants firstly form a Si-heterocyclic four-membered ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge atom in the Si-heterocyclic four-membered ring germylene and the ${\pi}$ orbital of acetone forming a ${\pi}{\rightarrow}p$ donor-acceptor bond, the Si-heterocyclic four-membered ring germylene further combines with acetone to form an intermediate. Because the Ge atom in the intermediate hybridizes to an $sp^3$ hybrid orbital after the transition state, then, the intermediate isomerizes to spiro-heterocyclic ring compound involving Si and Ge (P4) via a transition state.

Synthesis and Characterization of New Push-Pull Chromophores Containing BF2-Azopyrrole Derivatives

  • Ko, HayeMin
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • Novel push-pull chromophores containing 5’-(4-(bis(9,9-dimethyl-9H-fluoren-2-yl)aniline (bisDMFA) as a donor and phenylazo-methylpyrrolyl-boron difluoride (PhAPy-BF2) as an acceptor were designed and synthesized by the Knoevenagel condensation reaction for organic solar cells. Various electron withdrawing moieties were effectively introduced using 2,4-dimethyl-1H-pyrrole to afford new asymmetric BF2-azopyrrole molecules that were characterized by UV-vis spectroscopy and cyclic voltammetry measurements.

Preparation of CdS-pillared $H_4Nb_6O_7$ and Photochemical Reduction of Nitrate under Visible Light Irradiation

  • Tawkaew, Sittinun;Fujishiro, Yoshinobu;Uchida, Satoshi;Sato, Tsugio
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.43-46
    • /
    • 2000
  • $H_4Nb_6/O_{17}$/CdS nanocomposites which intercalated CdS particles, less than 0.8nm thickness, in the interlayer of $H_4Nb_6/O_{17}$ were prepared by the successive ion exchange reactions of $H_4Nb_6/O_{17}$ with $Cd^{2+}$ and $C_3H_7NH_3_+$, followed by the reaction with $H_2S$ gas. $H_4Nb_6/O_{17}$/CdS photocatalytically reduced $NO_3$ ̄ to $NO_2$ ̄ and $NH_3$in the presence of sacrificial hole acceptor such as methanol under visible light irradiation (wavelength>400nm), although unsupported CdS showed no noticeable photocatalytic activity for $NO_3$ ̄ reduction. The catalytic activity of $H_4Nb_6/O_{17}$/CdS greatly enhanced with co-doping of Pt particles in the interlayer.

  • PDF

Effect of Herbicide Paraquat on Electron Donor and Acceptor (제초제 Paraquat의 전자수용 및 방출에 대한 영향)

  • Kim Mi-Lim;Choi Kyung-Ho
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.311-315
    • /
    • 2005
  • When paraquat was added to the bacterial membrane or mitochondrial suspension, the mixture turned dark blue, but the color was disappeared by aeration. The same phenomenon was seen when electrons were supplied to the paraquat. Blue color appeared from near the cathode, and then spreaded to whole transit system. Coloration was accelerated by addition of alkali, but the color was reduced by addition of acid or oxygen. Paraquat exhibited absorption at ultraviolet region by electron transfer at the concentrations as low as 1.0 mM which did not exert difficulty in showing color reaction. Paraquat caused the increase of the optical density at 340 nm by electron transit, and an aspect of that had a strong resemblance to NADH. The acute toxic action of paraquat seemes to depend on inhibition of energy metabolism cased by paraquat action of electron donor and acceptor.

Synthesis and Characterization of Phenanthrene-substituted Fullerene Derivatives as Electron Acceptors for P3HT-based Polymer Solar Cells

  • Mi, Dongbo;Park, Jong Baek;Xu, Fei;Kim, Hee Un;Kim, Ji-Hoon;Hwang, Do-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1647-1653
    • /
    • 2014
  • 9,10-Bis(bromomethyl)phenanthrene reacted with fullerenes via a Diels-Alder reaction to give phenanthrene-substituted fullerene mono-adducts (PCMA) and bis-adducts (PCBA) as electron acceptors for organic photovoltaic cells (OPVs). The syntheses of the fullerene derivatives were confirmed by $^1H$ $^{13}C$ NMR spectroscopy and MALDI-TOF mass spectrometry. PCMA and PCBA showed better light absorption in the UV-visible region than $PC_{61}BM$. Their electrochemical properties were measured using cyclic voltammetry. Accordingly, the lowest unoccupied molecular orbital (LUMO) energy levels of PCMA and PCBA were -3.66 and -3.57 eV, respectively. Photovoltaic cells were fabricated with a ITO/PEDOT:PSS/poly(3-hexylthiophene)(P3HT):acceptor/LiF/Al configuration, where P3HT and PCBA are the electron donors and acceptors, respectively. The polymer solar cell fabricated using the P3HT:PCBA active layer showed a maximum power conversion efficiency of 0.71%.