Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.6.1647

Synthesis and Characterization of Phenanthrene-substituted Fullerene Derivatives as Electron Acceptors for P3HT-based Polymer Solar Cells  

Mi, Dongbo (Department of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University)
Park, Jong Baek (Department of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University)
Xu, Fei (Department of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University)
Kim, Hee Un (Department of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University)
Kim, Ji-Hoon (Department of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University)
Hwang, Do-Hoon (Department of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University)
Publication Information
Abstract
9,10-Bis(bromomethyl)phenanthrene reacted with fullerenes via a Diels-Alder reaction to give phenanthrene-substituted fullerene mono-adducts (PCMA) and bis-adducts (PCBA) as electron acceptors for organic photovoltaic cells (OPVs). The syntheses of the fullerene derivatives were confirmed by $^1H$ $^{13}C$ NMR spectroscopy and MALDI-TOF mass spectrometry. PCMA and PCBA showed better light absorption in the UV-visible region than $PC_{61}BM$. Their electrochemical properties were measured using cyclic voltammetry. Accordingly, the lowest unoccupied molecular orbital (LUMO) energy levels of PCMA and PCBA were -3.66 and -3.57 eV, respectively. Photovoltaic cells were fabricated with a ITO/PEDOT:PSS/poly(3-hexylthiophene)(P3HT):acceptor/LiF/Al configuration, where P3HT and PCBA are the electron donors and acceptors, respectively. The polymer solar cell fabricated using the P3HT:PCBA active layer showed a maximum power conversion efficiency of 0.71%.
Keywords
Phenanthrene-substituted fullerene; Electron acceptor; Organic photovoltaic cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Morinaka, Y.; Nobori, M.; Murata, M.; Wakamiya, A.; Sagawa, T.; Yoshikawa, S.; Murata, Y. Chem. Commun. 2013, 3670.
2 He, Y.; Zhao, G.; Peng, B.; Li, Y. Adv. Funct. Mater. 2010, 20, 3383.   DOI   ScienceOn
3 Meng, X.; Zhang, W.; Tan, Z.; Li, Y.; Ma, Y.; Wang, T.; Jiang, L.; Shu, C.; Wang, C. Adv. Funct. Mater. 2012, 22, 2187.   DOI   ScienceOn
4 Ye, G.; Chen, S.; Xiao, Z.; Zuo, Q.; Wei, Q.; Ding, L. J. Mater. Chem. 2012, 22, 22374.   DOI   ScienceOn
5 Lenes, M.; Wetzelaer, G.-J.; Kooistra, F; Veenstra, S.; Hummelen, J.; Blom, P. Adv. Mater. 2008, 20, 2116.   DOI   ScienceOn
6 Zhao, G.; He, Y.; Li, Y. J. Am. Chem. Soc. 2010, 132, 1377.   DOI   ScienceOn
7 Kim, K.-H.; Kang, H.; Nam, S. Y.; Jung, J.; Kim, P. S.; Cho, C.- H.; Lee, C.; Yoon, S. C.; Kim, B. J. Chem. Mater. 2011, 23, 5090.   DOI   ScienceOn
8 Mi, D.; Kim, H.-U.; Kim, J.-H.; Xu, F.; Jin, S.-H.; Hwang, D.-H. Synth. Met. 2012, 162, 483.   DOI   ScienceOn
9 Mihailetchi, V. D.; van Duren, J. K. J.; Blom, P. W. M.; Hummelen, J. C.; Janssen, R. A. J.; Kroon, J. M.; Rispens, M. T.; Verhees, W. J. H.; Wienk, M. M. Adv. Funct. Mater. 2003, 13, 43.   DOI   ScienceOn
10 He, Y.; Chen, H.-Y.; Hou, J.; Li, Y. J. Am. Chem. Soc. 2010, 132, 1377.   DOI   ScienceOn
11 Hummelen, J. C.; Knight, B. W.; LePeq, F.; Wudl, F.; Yao, J.; Wilkins, C. L. J. Org. Chem. 1995, 60, 532.   DOI   ScienceOn
12 Bundgaard, E.; Krebs, F. C. Sol. Energy Mater. Sol. Cell 2007, 91, 1019.   DOI   ScienceOn
13 Lungenschmied, C.; Dennler, G.; Neugebauer, H.; Sariciftci, S. N.; Glatthaar, M.; Meyer, T.; Meyer, A. Sol. Energy Mater. Sol. Cells 2007, 91, 379.   DOI   ScienceOn
14 Choi, S.; Potscavage, J. W. J.; Kippelen, B. J. Appl. Phys. 2009, 106, 054507.   DOI   ScienceOn
15 Krebs, F. C.; Spanggard, H.; Kjaer, T.; Biancardo, M.; Alstrup, J. Mater. Sci. Eng. B 2007, 138, 106.   DOI   ScienceOn
16 Krebs, F. C. Sol. Energy Mater. Sol. Cells 2009, 93, 1636.   DOI   ScienceOn
17 Tipnis, R.; Bernkopf, J.; Jia, S.; Krieg, J.; Li, S.; Storch, M.; Laird, D. Sol. Energy Mater. Sol. Cells 2009, 93, 442.   DOI   ScienceOn
18 Brabec, C. J.; Padinger, F.; Hummelen, J. C.; Janssen, R. A. J.; Sariciftci, N. S. Synth. Met. 1999, 102, 861.   DOI   ScienceOn
19 Brabec, C. J. Sol. Energy Mater. Sol. Cells 2004, 83, 273.   DOI   ScienceOn
20 Zhou, J.; Zuo, Y.; Wan, X.; Long, G.; Zhang, Q.; Ni, W.; Liu, Y.; Li, Z.; He, G.; Li, C.; Kan, B.; Li, M.; Chen, Y. J. Am. Chem. Soc. 2013, 135, 8484.   DOI   ScienceOn
21 Pagliaro, M.; Ciriminna, R.; Palmisano, G. ChemSusChem. 2008, 1, 880.   DOI   ScienceOn
22 Hauch, J. A.; Schilinsky, P.; Choulis, S. A.; Childers, R.; Biele, M.; Brabec, C. J. Sol. Energy Mater. Sol. Cells 2008, 92, 727.   DOI   ScienceOn
23 He, Z. C.; Zhong, C.; Huang, X.; Wong, W.-Y.; Wu, H.; Chen, L.; Su, S.; Cao, Y. Adv. Mater. 2011, 23, 4636.   DOI   ScienceOn
24 He, Z. C.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Nature Photonics 2012, 6, 591.
25 Armaroli, N.; Balzani, V. Angew. Chem., Int. Ed. 2007, 46, 52.   DOI   ScienceOn
26 Qian, D.; Ma, W.; Li, Z.; Guo, X.; Zhang, S.; Ye, L.; Ade, H.; Tan, Z.; Hou, J. J. Am. Chem. Soc. 2013, 135, 8464.   DOI   ScienceOn
27 Mikroyannidis, J. A.; Kabanakis, A. N.; Sharma, S. S.; Sharma, G. D. Adv. Funct. Mater. 2011, 21, 746.   DOI   ScienceOn