• Title/Summary/Keyword: acceleration-based

Search Result 2,301, Processing Time 0.027 seconds

Robust position control of DC motor using fuzzy acceleration control (퍼지 가속도제어를 이용한 직류전동기의 강인한 위치제어)

  • 박귀태;이기상;배상욱;박태홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.451-456
    • /
    • 1991
  • A robust position control scheme for DC Motor is proposed based on Fuzzy Acceleration Control. Proposed control system has the similar structure that Y. Hori proposed. But the PI type acceleration controller of it is replaced by Fuzzy Logic Controller(FLC) which is known to be robust to the operating point and parameter variations. By the simulation study for a real DC Motor, we have slowed the superiority to the continuous PI acceleration controller in the view point of robustness to the operating point and parameter variations.

  • PDF

Development of Standard of Highway Curve Geometric Considering 3-D Acceleration (3차원 가속도를 고려한 도로곡선부 유형별 설계기준 제시)

  • Park, Jung-Ha;Park, Je-Jin;Park, Tae-Hoon;Ha, Tae-Jun
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.247-255
    • /
    • 2008
  • According to "A guide Book to Highway Design", most road elements are chosen based on a certain design speed in order to ensure obtaining safe and smooth traffic operating. However, road safety in practical way is corelative to not only all element of roads but also road shape, for example, between straight line and curves line and between curved lines. Also, it is relates to alignments such as horizontal alignment, vertical alignment, and cross section. That is, the practical road design should be examined in both sides of 3 dimension and consecutiveness as the practical road is a 3-dimensional successive object. The paper presents a concept for acceleration to evaluate consistency of road considering actual road shape on 3-dimension. Acceleration of vehicle is influential to road consistency based on running state of vehicle and state of drivers. Especially, the magnitude of acceleration is a quite influential element to drivers. Based on above, the acceleration on each point 3-D road can be calculated and then displacement can be done. Computation of acceleration means total calculation on each axis.

  • PDF

Effect on Transient Performance of Driver's Acceleration Type in MPI Gasoline Engine (운전자의 가속타입이 MPI 가솔린엔진의 과도성능에 미치는 영향)

  • 곽지현;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.75-81
    • /
    • 2000
  • To provide the appropriate direction for development of transient control in a gasoline engine, transient performance analysis and evalution under four accelerating types based on typical driver's acceleration type were implemented by experimental study. In order to evaluate the characteristics of transient performance quanititatively, the concept and method by transient response specifications were introduced. Several performance parameters in terms of engine speed(RPM), manifold absolute pressure(MAP), fuel injection duration($\DeltatI_{nj}$) and air excess ratio($\lambda$) were emasured simultaneously during the four types of the throttle valve opening with the step motor controlled by PC. The result showed that transient response specifications in terms of delay time, rising time and settling time characterized the transient performance for four acceleration types quantitatively. Intensified acceleration type was most economical and linear acceleration type revealed the best emission performance.

  • PDF

An Optimization Technique For Crane Acceleration Using A Genetic Algorithm (유전자알고리즘을 이용한 크레인가속도 최적화)

  • 박창권;김재량;정원지;홍대선;권장렬;박범석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1701-1704
    • /
    • 2003
  • This paper presents a new optimization technique of acceleration curve for a wafer transfer crane movement in which high speed and low vibration are desirable. This technique is based on a genetic algorithm with a penalty function for acceleration optimization under the assumption that an initial profile of acceleration curves constitutes the first generation of the genetic algorithm. Especially the penalty function consists of the violation of constraints and the number of violated constraints. The proposed penalty function makes the convergence rate of optimization process using the genetic algorithm more faster than the case of genetic algorithm without a penalty function. The optimized acceleration of the crane through the genetic algorithm and commercial dynamic analysis software has shown to have accurate movement and low vibration.

  • PDF

Numerical study of the effects of periodic body acceleration (PGZ) and bifurcation angle in the stenosed artery bifurcation

  • Ro, Kyoung-Chul;Ryou, Hong-Sun
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.3
    • /
    • pp.175-183
    • /
    • 2009
  • This article describes the numerical investigation of blood flow in the stenosed artery bifurcation with acceleration of the human body. Using the commercial software FLUENT, three-dimensional analyses were performed for six simulation cases with different body accelerations and bifurcation angles. The blood flow was considered to be pulsation flow, and the blood was considered to be a non-Newtonian fluid based on the Carreau viscosity model. In order to consider periodic body acceleration, a modified, time-dependent, gravitational-force term was used in the momentum equation. As a result, flow variables, such as flow rate and wall shear stress, increase with body acceleration and decrease with bifurcation angle. High values of body acceleration generate back flow during the diastolic period, which increases flow fluctuation and the oscillatory shear index at the stenosis.

Acceleration Optimization of a Dynamic Structure Using a Genetic Algorithm (유전자 알고리즘을 이용한 동적 구조물의 가속도 최적화)

  • 정원지;박창권;홍대선
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.25-32
    • /
    • 2004
  • This paper presents a new optimization technique of acceleration curve for dynamic structure's movement in which high speed and low vibration are desirable. This technique is based on a genetic algerian with a penalty function for acceleration optimization under the assumption that an initial profile of acceleration curves constitutes the first generation of the genetic algorithm. Especially the penalty function consists of the violation of constraints and the number of violated constraints. The optimized acceleration of the crane through the genetic algorithm and commercial dynamic analysis software has shown to have accurate movement and low vibration compared to the conventional accelerations with jerk discontinuity.

A Study on Estimate Vascular Compliance using Acceleration Photoplethymogram (가속도 맥파를 이용한 혈관탄성 추정에 관한 연구)

  • Lee, Chung-Luyl;Kim, Kyung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.840-844
    • /
    • 2013
  • In this study, we try to estimate vascular compliance for management vascular disease. Because It is known the vascular compliance represents the state of the blood vessels. In general, the vascular compliance is estimated using an acceleration photoplethymogram from measured by photoplethymogram-based. The acceleration photoplethymogram is come from second derivative of photoplethymogram. By using the acceleration photoplethymogram, we can estimating vascular compliance, vascular age, vascular state. In this study, for measuring acceleration photoplethymogram we have developed a measurement device having analog filters. It has the advantage of miniaturization, low-power because it is simpler than digital filters. Using the developed device, we have estimated vascular compliance and tested the reliability of our device compare with conventional device having digital filters. As a result.

SIMM Method Based on Acceleration Extraction for Nonlinear Maneuvering Target Tracking

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.255-263
    • /
    • 2012
  • This paper presents the smart interacting multiple model (SIMM) using the concept of predicted point and maximum noise level. Maximum noise level means the largest value of the mere noises. We utilize the positional difference between measured point and predicted point as acceleration. Comparing this acceleration with the maximum noise level, we extract the acceleration to recognize the characteristics of the target. To estimate the acceleration, we propose an optional algorithm utilizing the proposed method and the Kalman filter (KF) selectively. Also, for increasing the effect of estimation, the weight given at each sub-filter of the interacting multiple model (IMM) structure is varying according to the rate of noise scale. All the procedures of the proposed algorithm can be implemented by an on-line system. Finally, an example is provided to show the effectiveness of the proposed algorithm.

Vibration-based Damage Monitoring Scheme of Steel Girder Bolt-Connection Member by using Wireless Acceleration Sensor Node (무선 가속도 센서노드를 이용한 강 거더 볼트연결 부재의 진동기반 손상 모니터링 체계)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.81-89
    • /
    • 2012
  • This study propose the vibration-based damage monitoring scheme for steel girder bolt-connection member by using wireless acceleration sensor node. In order to achieve the objective, the following approaches are implemented. Firstly, wireless acceleration sensor node is described on the design of hardware components and embedded operation software. Secondly, the vibration-based damage monitoring scheme of the steel girder bolt-connection member is described. The damage monitoring scheme performed global damage occurrence alarming and damage localization estimation by the acceleration response feature analysis. The global damage alarming is applied to the correlation coefficient of power spectral density. The damage localization estimation is applied to the frequency-based damage detection technique and the mode-shape-based damage detection technique. Finally, the performance of the vibration-based damage monitoring scheme is evaluated for detecting the bolt-connection member damage on a lab-scale steel girder.

Autonomous Aerobatic Flight for Fixed Wing Aircraft (고정익 항공기의 자율 곡예비행)

  • Park, Sang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1217-1224
    • /
    • 2009
  • A simple and effective guidance and control scheme that enables autonomous three-dimensional path-following for a fixed wing aircraft is presented. The method utilizes the nonlinear path-following guidance law for the outer loop that creates steering acceleration command based on the desired flight path and the current position and velocity of the vehicle. The scheme considers the gravity in the guidance level, where it is subtracted from the acceleration command to form the specific force acceleration command which the aircraft is better suited to follow than the total acceleration command in the inner-loop. A roll attitude control scheme is also presented that enables inverted flight or sideslip maneuvers such as slow roll and knife-edge. A series of aerobatic maneuvers are demonstrated through simulations to show the potential of the proposed scheme.