• 제목/요약/키워드: acceleration mechanism

검색결과 306건 처리시간 0.021초

Dynamic equivalent model of a SMART control rod drive mechanism for a seismic analysis

  • Ahn, Kwanghyun;Lee, Jae-Seon
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1834-1846
    • /
    • 2020
  • The SMART (System-integrated Modular Advanced ReacTor) is an integral-type small modular reactor developed by KAERI (Korea Atomic Energy Research Institute). This paper discusses the development of a dynamic equivalent model of the SMART control rod drive mechanism that can be efficiently utilized for complicated analysis during the design of the SMART. A semi-empirical approach is used to develop the equivalent model; that is, the equivalent model is defined analytically and verified empirically. Two types of tests, dynamic characteristics tests and seismic loading tests, are conducted for the development and verification of the dynamic equivalent model, respectively. Acceleration response spectra from the seismic analysis based on the developed equivalent model show good agreement with those from the seismic loading tests.

보행 보조 웨어러블 시스템 설계 (Design of Assistive Wearable System for Walking)

  • 최성대;이상훈
    • 한국기계가공학회지
    • /
    • 제18권12호
    • /
    • pp.111-116
    • /
    • 2019
  • With the recent acceleration of industrial technologies and active research, wearable robot technologies have been applied to various fields. To study the utility of wearable robots, basic research on kinetic mechanisms of the human body, bio-signal analysis, and system control are essential. In this study, we investigated the basic structure of a wearable system and the operating principles of a driving mechanism. The control system and supporting structure, which comprise the driving mechanism, were designed and manufactured. Motion and load analyses were performed simultaneously for the design of the kinematic drive, and the driving mechanism was constructed by analyzing walking motion. The operating conditions of the cylinder were verified by stride via driving experiments. Further, the accuracy and responsiveness of the system were confirmed by comparison with actual motion, and the system safety was validated by applying loads.

스프링구동 메커니즘의 충격 하중을 받는 링크부재의 내피로 특성 향상 (Improvement of Fatigue-Proof Characteristics of Link Members Under Impact Loadings by a Spring-Actuated Mechanism)

  • 안길영;박상후;이부윤;김원진;오일성
    • 한국정밀공학회지
    • /
    • 제20권4호
    • /
    • pp.158-164
    • /
    • 2003
  • The air circuit breaker (ACB) with the spring-actuated mechanism was studied to improve the fatigue-proof characteristics of its link. The low-cycle fatigue fracture phenomenon occurred on the critical link, called h-link, of ACB from the repeated rapid closing and opening operations. To analyze the cause of failure, dynamic FE-analysis on the b-link part of ACB was performed considering tile velocity and acceleration of the links per time as boundary conditions, which were obtained by using ADAMS. Also, the S-N curve obtained by experiments was used to investigate requirement on the fatigue-proof characteristics. Then, to reduce the maximum tensile stress on the h-link, three types of h-link were examined and one of them was selected.

정밀 위치 결정 및 고하중 부담 능력을 지닌 6-자유도 스테이지의 설계 (Design of a 6-DOF Stage for Precision Positioning and Large Force Generation)

  • 신현표
    • 한국정밀공학회지
    • /
    • 제30권1호
    • /
    • pp.105-112
    • /
    • 2013
  • This paper presents the structural design and finite element analysis of precision stage based on a double triangular parallel mechanism for precision positioning and large force generation. Recently, with the acceleration of miniaturization in mobile appliances, the demand for precision aligning and bonding has been increasing. Such processes require both high precision and large force generation, which are difficult to obtain simultaneously. This study aimed at constructing a precision stage that has high precision, long stroke, and large force generation. Actuators were tactically placed and flexure hinges were carefully designed by optimization process to constitute a parallel mechanism with a double triangular configuration. The three actuators in the inner triangle function as an in-plane positioner, whereas the three actuators in the outer triangle as an out-of-plane positioner. Finite element analysis is performed to validate load carrying performances of the developed precision stage.

OCCURENCE AND LUMINOSITY FUNCTIONS OF GIANT RADIO HALOS FROM MAGNETO-TURBULENT MODEL

  • CASSANO R.;BRUNETTI G.;SETTI G.
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.589-592
    • /
    • 2004
  • We calculate the probability to form giant radio halos (${\~}$ 1 Mpc size) as a function of the mass of the host clusters by using a Statistical Magneto-Turbulent Model (Cassano & Brunetti, these proceedings). We show that the expectations of this model are in good agreement with the observations for viable values of the parameters. In particular, the abrupt increase of the probability to find radio halos in the more massive galaxy clusters ($M {\ge} 2{\times}10^{15} M_{\bigodot}$) can be well reproduced. We calculate the evolution with redshift of such a probability and find that giant radio halos can be powered by particle acceleration due to MHD turbulence up to z${\~}$0.5 in a ACDM cosmology. Finally, we calculate the expected Luminosity Functions of radio halos (RHLFs). At variance with previous studies, the shape of our RHLFs is characterized by the presence of a cut-off at low synchrotron powers which reflects the inefficiency of particle acceleration in the case of less massive galaxy clusters.

의료용 할로겐램프의 가속수명시험에 관한 연구 (A Study on Accelerated Life Test of Halogen Lamps for Medical Device)

  • 정재한;김명수;임헌상;김용수
    • 품질경영학회지
    • /
    • 제41권4호
    • /
    • pp.659-672
    • /
    • 2013
  • Purpose: The purpose of this study was to estimate life time of halogen lamps and acceleration factors using accelerated life test. Methods: Voltage was selected as an accelerating variable through the technical review about failure mechanism. The test was performed at 14.5V, 15.5V and 16.5 for 4,471 hours. It was assumed that the lifetime of Halogen lamps follow Weibull distribution and the inverse power life-stress relationship models. Results: Mean lifetimes of pin and screw types were 19,477 hours and 6,056 hours, respectively. In addition, acceleration factor of two items are calculated as 4.8 and 2.2 based on 15.5V, respectively. Conclusion: The life-stress relationship, acceleration factor, and MTTF at design condition are estimated by analyzing the accelerated life test data. These results suggest that voltage was very important factor to accelerate life time in the case of halogen lamps and the life time of pin type is three times longer than screw type lamps.

DESIGN AND PERFORMANCE PARAMETERS OF VIBRATING POTATO DIGGERS

  • Kang, Whoa-S.;Kim, Sang-H.;Lee, Gwi-H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.734-743
    • /
    • 1993
  • The performances of three same type of vibrating potato diggers were estimated by observing the potato separation and material flow on the bottom plate. Four-bar mechanism were adopted for three diggers and pairs of eccentric cams on both sides of driving shaft were used as driving link of the diggers. Each machine was tested with different amplitudes , frequencies, and travels speeds. Blade performance were observed in three categories : Impossible forward travel , acceptable operation, and unsatisfactory potato digging , but good material flow. Three parameters were used to set marginal values that enable the machines operate for potato digging, and the parameters were compared to select best one. Three parameters are λ, $\rho$, and K.λ is the ratio of vibrating speed to travel speed, $\rho$ is the ratio of blade acceleration to travel speed, and K is the ratio of blade acceleration to gravitational acceleration. K value of 2 or more is suggested to be used as design and evalu tion criterion of the vibrating digger.

  • PDF

Accurate Control Position of Belt Drives under Acceleration and Velocity Constraints

  • Jayawardene, T.S.S.;Nakamura, Masatoshi;Goto, Satoru
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권4호
    • /
    • pp.474-483
    • /
    • 2003
  • Belt drives provide freedom to position the motor relative to the load and this phenomenon enables reduction of the robot arm inertia. It also facilitates quick response when employed in robotics. Unfortunately, the flexible dynamics deteriorates the positioning accuracy. Therefore, there exists a trade-off between the simplicity of the control strategy to reject time varying disturbance caused by flexibility of the belt and precision in performance. Resonance of the system further leads to vibrations and poor accuracy in positioning. In this paper, accurate positioning of a belt driven mechanism using a feed-forward compensator under maximum acceleration and velocity constraints is proposed. The proposed method plans the desired trajectory and modifies it to compensate delay dynamics and vibration. Being an offline method, the proposed method could be easily and effectively adopted to the existing systems without any modification of the hardware setup. The effectiveness of the proposed method was proven by experiments carried out with an actual belt driven system. The accuracy of the simulation study based on numerical methods was also verified with the analytical solutions derived.

사출 차량에서의 외란을 이용한 정밀 지향성 향상 연구 (A Study on Improvement of Aiming ability using Disturbance Measurement in the Firing Vehicle)

  • 유진호;이동주
    • 한국추진공학회지
    • /
    • 제11권2호
    • /
    • pp.62-70
    • /
    • 2007
  • 지향성능은 발사차량의 정확성에 있어서 중요한 요소이다. 본 연구는 외란 가속도를 이용하여 지향구조물의 진동을 감지하는 방안과 실험 결과에 대하여 기술하였다. 주행 중 발생하는 진동 경향을 분석하기 위하여 가속도 자료를 이동평균과 힐버트 변환을 이용하여 신호 처리하였다. 다양한 외란에 대하여 가속도의 모드 계수를 얻었으며, 차량속도, 노면조건, 지향구조물의 특성을 차량 동특성의 진동을 변화시키는 요소로 간주하였다. 마지막으로 다양한 주행 조건의 진동 신호를 분류하기 위한 패턴인식에 역전파 신경망 이론을 이용하였다. 각 조건에 대하여 실험 결과를 비교 분석하였다.

각가속도 변화에 의해 탐지된 슬립에 기반한 주행로봇의 견인력 제어 (Traction Control of Mobile Robot Based on Slippage Detection by Angular Acceleration Change)

  • 최현도;우춘규;강현석;김수현;곽윤근
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.184-191
    • /
    • 2009
  • The common requirements of rough terrain mobile robots are long-term operation and high mobility in rough terrain to perform difficult tasks. In rough terrain, excessive wheel slip could cause an increase in the amount of dissipated energy at the contact point between the wheel and ground or, even more seriously, the robot could lose all mobility and become trapped. This paper proposes a traction control algorithm that can be independently implemented to each wheel without requiring extra sensors and devices compared with standard velocity control methods. The proposed traction algorithm is analogous to the stick-slip friction mechanism. The algorithm estimates the slippage of wheels by angular acceleration change, and controls the increase or decrease state of torque applied to wheels Simulations are performed to validate the algorithm. The proposed traction control algorithm yielded a 65.4% reduction of total slip distance and 70.6% reduction of power consumption compared with the standard velocity control method.