• 제목/요약/키워드: acceleration mechanism

검색결과 308건 처리시간 0.027초

Numerical validation of Multiplex Acceleration Model for earthquake induced landslides

  • Zheng, Lu;Chen, Guangqi;Zen, Kouki;Kasama, Kiyonobu
    • Geomechanics and Engineering
    • /
    • 제4권1호
    • /
    • pp.39-53
    • /
    • 2012
  • Due to strong ground motion of earthquake, the material in the landslide can travel a significant distance from the source. A new landslide model called Multiplex Acceleration Model (MAM) has been proposed to interpret the mechanism of long run-out movement of this type of landslide, considering earthquake behaviors on slope and landslide materials. In previous study, this model was verified by a shaking table test. However, there is a scale limitation of shaking table test to investigate MAM in detail. Thus, numerical simulation was carried out in this study to validate MAM under full scale. A huge rock ejected and A truck threw upwards by seismic force during Wenchuan Earthquake (Ms. 8.0) was discussed based on the simulation results. The results indicate that collisions in P-phase of earthquake and trampoline effect are important behaviors to interpret the mechanism of long run-out and high velocity. The results show that MAM is acceptable and applicable.

계란선별기의 계란이송 메커니즘 해석 및 설계 (Design of Packer Holder Mechanism in an Egg Grading Machine)

  • 이장용
    • 한국정밀공학회지
    • /
    • 제25권2호
    • /
    • pp.96-104
    • /
    • 2008
  • An egg grading machine is composed of many mechanisms of which functions are to carry eggs to the bucket in that sensors are located to categorize eggs by their weight, to transfer eggs from the basket of packer holder to the mold tray, to feed the mold tray dispenser after egg chairs are filled with eggs. This paper deals with the analysis and new design of packer holder mechanism of which function is transfer eggs vertically from the bucket conveyor to the mold tray dispenser. Egg is fragile to impact so in designing packer holder mechanism it is necessary to estimate moving speed, acceleration and impact when eggs are touched by any links of mechanism and mold tray dispenser. A new packer holder mechanism is proposed in this paper, which use quick return mechanism composed of 6 links with pin and contact joints.

플랫폼의 운동성을 향상시킨 병렬 기구의 설계 (A design of parallel mechanism to improve the workspace of platform)

  • 유재명;최기훈;김영탁
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1655-1658
    • /
    • 2003
  • The application area of parallel mechanism is limited in spite of many advantages of that because the workspace of platform is a very small. Thus enlargement of workspace is important issue in design of parallel mechanism. In this paper a parallel mechanism design method is described using commercial simulation program. Firstly strokes of the assembled parallel mechanism's active joints are simulated from kinetic simulation mode to get required workspace, Secondly, dynamic parameters(velocity, acceleration, force, moment) are simulated for the gravity, friction and exit load. Finally, workspace of moving platform is displayed and workspace of area is simulated by motion analysis. The results of this paper will help engineer to design parallel mechanism with optimize workspace.

  • PDF

직립자세에서의 전방향 동요 시 균형회복 기전 (Balance Recovery Mechanisms Against Anterior Perturbation during Standing)

  • 태기식;김영호
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권5호
    • /
    • pp.435-442
    • /
    • 2003
  • In this paper, biomechanical aspects of dynamic대학교postural responses against forward perturbations were experimentally determined simultaneous measurements of joint angles, accelerations. EMG activations, center of pressure(CoP) movements and ground reaction forces(GRF), Thirteen young healthy volunteers, stood on a flat platform, were translated into the forward direction by an AC servo-motor at two separate velocities(0.1m and 0.2m/s). In order to recover postural balance against the forward perturbation, joint motions were observed in the sequence of the ankle dorsiflexion, the knee flexion and then the hip flexion during the later acceleration phase. Both acceleration patterns at the heel and the sacrum were shown the forward acceleration pattern during the later acceleration phase and early of constant velocity phase as increasing platform velocity, respectively. Tibialis anterior(TA) for the ankle dorsiflexion and biceps femoris(BF) for the knee flexion. the primary muscle to recover the forward perturbation, was activated during the half of acceleration phase. Ankle strategy was used for slow-velocity perturbation, but mixed strategy of both ankle and hip used for the fast-velocity perturbation. In addition, parameters of perturbation such as timing and magnitude influenced the postural response against the perturbation.

바인더수확기(收穫期)의 방출구조(放出構造) 개선(改善)에 관한 연구(硏究) (Modification of Discharge Mechanism of Binder Harvesters)

  • 박금주;정창주;류관희
    • Journal of Biosystems Engineering
    • /
    • 제8권2호
    • /
    • pp.26-38
    • /
    • 1983
  • Binder harvesters introduced to Korea were originally designed to be used for Japonica varieties which are highly resistant to shattering. In order to improve the performance of the binder to Indica varieties which are easily shattered and have shorter stem, mechanical modifications of the binder are inevitable. Shattering losses of the binder can be classified into two major parts; one incurred before and one after binding operations. The latter has been evaluated as great as the former. Previous studies indicated that the high discharge losses resulted from a great impact force of the discharge arm on the rice bundle during the discharge process. This study was intended to theoretically analyze the discharge mechanism of four-bar linkage. For this purpose, two commercially available binder harvesters having a four-bar linkage as a discharge mechanism were analyzed. Using the results from the motion analysis and the other structural constraints of the machines, they were modified and experimentally compared with the machines without modification to see whether any decrease in grain losses was obtained. The results obtained in this study are summarized as follows: 1. The path, velocity and acceleration of discharge arm were computer analyzed by vector analysis. Using results of the analysis and intrinsic constraints of the binder, discharge mechanism was modified to reduce the impact force on bundle by discharge arm in the range where the discharge performance was not deteriorated. This modification of the discharge mechanism could be done with an aid of four-bar linkage synthesis technique. As a result, average velocity and acceleration of the discharge arm during the discharge process were reduced respectively by 19 percent and 33 percent for binder A, and 17 percent and 35 percent for binder B. 2. Through the modification of the discharge mechanism, discharge losses of binder A were reduced by 42-56 percent for Milyang 23, Poongsan and Hangang chal, and discharge losses of binder B were reduced by 13-20 percent for Milyang 23 and Poongsan. 3. Discharge losses were decreased as the bundle size became larger and the size effect on the decrease rate appeared more significant in the binders with modifications than in those without modifications.

  • PDF

Acceleration of Simulated Fault Injection Using a Checkpoint Forwarding Technique

  • Na, Jongwhoa;Lee, Dongwoo
    • ETRI Journal
    • /
    • 제39권4호
    • /
    • pp.605-613
    • /
    • 2017
  • Simulated fault injection (SFI) is widely used to assess the effectiveness of fault tolerance mechanisms in safety-critical embedded systems (SCESs) because of its advantages such as controllability and observability. However, the long test time of SFI due to the large number of test cases and the complex simulation models of modern SCESs has been identified as a limiting factor. We present a method that can accelerate an SFI tool using a checkpoint forwarding (CF) technique. To evaluate the performance of CF-based SFI (CF-SFI), we have developed a CF mechanism using Verilog fault-injection tools and two systems under test (SUT): a single-core-based co-simulation model and a triple modular redundant co-simulation model. Both systems use the Verilog simulation model of the OpenRISC 1200 processor and can execute the embedded benchmarks from MiBench. We investigate the effectiveness of the CF mechanism and evaluate the two SUTs by measuring the test time as well as the failure rates. Compared to the SFI with no CF mechanism, the proposed CF-SFI approach reduces the test time of the two SUTs by 29%-45%.

Seismic response of steel reinforced concrete spatial frame with irregular section columns under earthquake excitation

  • Xue, Jianyang;Zhou, Chaofeng;Liu, Zuqiang;Qi, Liangjie
    • Earthquakes and Structures
    • /
    • 제14권4호
    • /
    • pp.337-347
    • /
    • 2018
  • This paper presents some shaking table tests conducted on a 1/4-scaled model with 5-story steel reinforced concrete (SRC) spatial frame with irregular section columns under a series of base excitations with gradually increasing acceleration peaks. The test frame was subjected to a sequence of seismic simulation tests including 10 white noise vibrations and 51 seismic simulations. Each seismic simulation was associated with a different level of seismic disaster. Dynamic characteristic, strain response, acceleration response, displacement response, base shear and hysteretic behavior were analyzed. The test results demonstrate that at the end of the loading process, the failure mechanism of SRC frame with irregular section columns is the beam-hinged failure mechanism, which satisfies the seismic code of "strong column-weak beam". With the increase of acceleration peaks, accumulated damage of the frame increases gradually, which induces that the intrinsic frequency decreases whereas the damping ratio increases, and the peaks of acceleration and displacement occur later. During the loading process, torsion deformation appears and the base shear grows fast firstly and then slowly. The hysteretic curves are symmetric and plump, which shows a good capacity of energy dissipation. In summary, SRC frame with irregular section columns can satisfy the seismic requirements of "no collapse under seldom earthquake", which indicates that this structural system is suitable for the construction in the high seismic intensity zone.

추가 이동 질량을 이용한 선형 모터용 반발력 보상 기구 (A Passive Reaction Force Compensation Mechanism for a Linear Motor Motion Stage using an Additional Movable Mass)

  • 응웬덕칸;안형준
    • 한국정밀공학회지
    • /
    • 제31권10호
    • /
    • pp.929-934
    • /
    • 2014
  • Reaction force compensation (RFC) mechanism can relieve the vibration of base system caused by acceleration and deceleration of mover. In this paper, we propose a new passive RFC mechanism with a movable additional mass to reduce vibration of the system base as well as displacement of the magnet track. First, equation of motion for the new passive RFC mechanism is derived and simulated to tune design parameters such as masses and spring coefficients. Simulation results show that the vibration of the system base of the stage with the new RFC mechanism.

틸팅판토그라프의 틸팅 메커니즘 및 가이드 트랙형상 설계에 관한 연구 (The Study for Design of Tilting Mechanism and Guide Track of Tilting Pantograph)

  • 고태환;김남포;한성호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.798-803
    • /
    • 2004
  • The development of tilting train is required for speedup on the conventional electric railroad due to the characteristic of Korean railroad with a lot of curve track. The study and development of a tilting system and a tilting bogie which have a different mechanism with high speed train will playa important role for enhancement of technology for Korean railway. The study for tilting pantograph mechanism to decrease the displacement between a catenary and a center of pantograph happened when the carbody is tilted in order to maintain the ride comfort and stability on a curving track is proceeding with the development of tilting train. In this paper. we introduce the design concept for the tilting mechanism of a tilting pantograph and the role and characteristics for several devices adopted in the tilting pantograph mechanism. Through the kinematic analysis of tilting mechanism. we will obtain and calculate the optimal tilting angular velocity and acceleration in order to keep the contact behavior of a pantograph and a catenary according to tilting of a carbody.

  • PDF

PARTICLE ACCELERATION AND NON-THERMAL EMISSION FROM GALAXY CLUSTERS

  • BRUNETTI GIANFRANCO
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.493-500
    • /
    • 2004
  • The existence and extent of non-thermal phenomena in galaxy clusters is now well established. A key question in our understanding of these phenomena is the origin of the relativistic electrons which may be constrained by the modelling of the fine radio properties of radio halos and of their statistics. In this paper we argue that present data favour a scenario in which the emitting electrons in the intracluster medium (ICM) are reaccelerated in situ on their way out. An overview of turbulent-particle acceleration models is given focussing on recent time-dependent calculations which include a full coupling between particles and MHD waves.