• Title/Summary/Keyword: acceleration criteria

Search Result 201, Processing Time 0.028 seconds

A Study on National Fashion Cases of Conscious Fashion as an ESG Practice (ESG 실천 방안으로서의 컨셔스 패션(Conscious Fashion)의 국내 패션 사례 연구)

  • Heejeong Park
    • Journal of Fashion Business
    • /
    • v.27 no.5
    • /
    • pp.13-25
    • /
    • 2023
  • The implementation of ESG practices in the fashion industry has been accelerating, and its significance has been growing across all industries. This paper aims to examine the strategies for ESG implementation in domestic fashion brands and analyze how ESG principles are applied in the context of domestic conscious fashion. To analyze conscious fashion as a means of ESG implementation, the evaluation criteria of ESG from the Textile Fashion Policy Research Institute were utilized as analytical tools. As a result, five categories of domestic conscious fashion emerged: animal-free vegan fashion, eco-friendly plant-based vegan materials, upcycled fashion, regenerated fiber fashion utilizing waste materials, and fair trade fashion. The characteristics of these ESG practices in conscious fashion were identified with four key features. Firstly, the adoption of environmentally friendly materials demonstrates a tendency towards resource conservation, minimizing environmental degradation, and protecting ecosystems. Secondly, technology-driven circular practices are predominant in vegan and upcycled types, evident in the development of fashion materials and secondhand content. Thirdly, design practices based on scarcity incorporate characteristics of upcycling and fair trade. Lastly, the practices of social and ethical values underlie the philosophies of three types of conscious fashion. With the acceleration of ESG practices in the fashion industry and the increasing importance thereof, it is expected that domestic conscious fashion in South Korea will diversify in the future.

Relationship between Normal Measurement and Error Rate of Output Voltage Linear Ratio of Seismic Accelerometer in Use (사용 중 지진 가속도계의 정상 측정과 출력전압 선형비 오차율 관계 분석)

  • Min-Jun Kim;Seong-Cheol Cho;Yong-Hun Jung;Jeong-Hun Won
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.65-74
    • /
    • 2024
  • We analyzed the relationship between the normal measurement of the seismic accelerometer (SA) and the error rate of the output voltage linear ratio to propose an evaluation method to determine whether the SA in use is measuring normally. Utilizing a test bed, the regular operation of SA in use was evaluated using acceleration data measured through impact tests since there are no regulations regarding performance testing of SA in use. For the used SA, the error rate of the output voltage linear ratio, which is a major performance criterion, was evaluated. We analyzed common characteristics of the SA that satisfied the impact test and the performance criteria of the output voltage linear ratio error rate. The results indicated that we must consider the decreasing trend and convergence of the error rate as the measurement angle increases, ensuring that the average value of the output voltage linear ratio error rate is within 1%.

Parametric study on the impact of traffic-induced vibrations on residential structures in Istanbul, Turkey

  • A. Yesilyurt;M.R. Akram;A. Can Zulfikar;H. Alcik
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.2
    • /
    • pp.87-100
    • /
    • 2024
  • Traffic-induced vibrations (TIVs) possess the potential to induce structural damage in both historical and critical edifices. Recent investigations have underscored the adverse impact of TIVs within buildings, manifesting as a deleterious influence on the quality of life and operational efficiency of occupants. Consequently, these studies have dichotomized TIVs into two primary limit categories: the threshold for vibrations capable of causing structural damage and the limit values associated with human comfort. In this current research endeavor, an exhaustive analysis of peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), and the frequency spectrum of ground motions originating from diverse traffic sources has been conducted. Furthermore, the detrimental repercussions of these vibrations on structures, gauged through the assessment of the peak particle velocity (PPV) parameter, have been systematically evaluated. The findings of this study elucidate that TIVs within the examined structures do not attain magnitudes conducive to structural compromise; however, the levels surpassing human comfort limits are evident, attributable to specific sources and distances. Moreover, this investigation sheds light on the absence of comprehensive criteria and guidelines pertaining to the assessment of TIVs in structures within the Turkish Building Seismic Design Code 2018. It seeks to raise awareness among building constructors about the critical importance of addressing this issue, emphasizing the imperative for guidelines in mitigating the impact of TIVs on both structural integrity and human well-being.

LQG Hybrid Vibration Control of a Structure Using TMD (Tuned Mass Damper(TMD)를 이용한 구조물의 Linear Quadratic Gaussian(LQG) 하이브리드 진동제어)

  • Lee, Jin-Ho;Lee, Sang-Beom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.108-118
    • /
    • 2006
  • The purpose of this study is to investigate the effectiveness of a LQG Hybrid controller to suppress the earthquake disturbance for the building structure. The ground acceleration of N-S component of El-Centro earthquake was scaled to confirm that the building behaved within the elastic range. The tuned mass damper(TMD) on the top floor regulated by LQG algorithm was designed to control the floor displacements. The displacement responses of the hybrid control were compared with those obtained from an active control along with a passive control. The results showed that the LQG hybrid control used approximately 50% less input forces than an active control to satisfy the performance criteria.

A Study on the Running Stability of the High-speed Train by Wind Pressure and Crossing (고속열차의 풍압 및 교행에 의한 주행안정성 연구)

  • Jeon, Chang-Sung;Yun, Su-Hwan;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.880-887
    • /
    • 2020
  • This study was conducted to investigate the running stability of a high-speed train operated in a tunnel and an open field when external forces such as wind pressure and train crossings were applied to the vehicle. With no external force, the running stability at 400 km/h was examined, and the wheel weight reduction ratio, lateral pressure of the axles, and derailment coefficient satisfied the criteria of the technical standards for a high-speed train. When the distance between the centers of the tracks is 4.6 m, the external force caused by train crossing slightly affects the lateral acceleration of the vehicle but does not significantly affect the wheel weight reduction rate, lateral pressure, and derailment coefficient in a tunnel and open filed. When the distance is 4.6~5.0 m, the wheel weight reduction ratio, lateral pressure, and derailment coefficient satisfy the criteria with 20 m/s wind. When the wind speed was 30 m/s, the derailment coefficient satisfied the criteria, and the other variables exceeded them. It is predicted that a high-speed train can be operated safely at 400 km/h with wind speed of up to 20 m/s, and it should be slowed down at a wind speed of 30 m/s.

Application Ranges of Finite Difference Models Using Simplified Momentum Equation in Channel Flow simulation (하천흐름 해석에서 단순화된 운동방정식을 사용한 유한차분모델의 신뢰성 있는 적용 범위)

  • Choi, Gye-Woon;Ahn, Kyung-Soo;Ahn, Sang-Jin
    • Water for future
    • /
    • v.27 no.4
    • /
    • pp.123-133
    • /
    • 1994
  • The kinematic and diffusion models using simplified momentum equations of the full dynamic equation have been frequently used for numerical flow simulations, because they have several computational advantages compared to the full dynamic model. In this paper, the more generally acceptable application ranges of the kinematic and diffusion finite difference models were investigated based on three major parameters, which are channel bed slopes So, dimensionless depth increasing numbers Gw at upstream boundary and Froude numbers Fr. The applicable ranges were obtained by comparing the relative magnitudes of the local acceleration, convective acceleration, pressure, gravity and friction terms in the full dynamic equation. In the simulations, a Courant number of 0.5 was used and the channel bed slopes were changed from 0.00001 to 0.05. Also, Froude numbers of 0.1, 0.5 and 0.9 were employed. In this paper, it is indicated that the applicable ranges of kinematic models are increased with increasing of Froude numbers. However, the applicable ranges of diffusion models are decreased with increasing of Froude numbers. Finally, 9 figures were proposed as a guideline in the application of kinematic and diffusion finite difference models based upon the allowable deviation compared to the full dynamic model. With applying the proposed criteria, it is expected that the flow simulations in the channels, streams or rivers are more efficiently achieved.

  • PDF

Earthquake-Resistant Design of Cantilever Retaining-Walls with Sloped Base (기초슬래브의 밑면이 경사진 캔티레바식 옹벽의 내진설계)

  • Kim, Hong Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.87-98
    • /
    • 1990
  • The present Study dealt with the earthquake-resistant design of cantilever retaining walls supporting cohesionless soils. With design examples of three different types of cantilever retaining walls, the factors of safety against sliding were computed at various values of horizontal acceleration coefficient and compared with each other. The horizontal inertia effect due to the weights of concrete wall itself and a portion of backfill was taken into account in the analyses, and also Mononobe-Okabe pseudo-static solution method was modified to deal with various states different from limiting equilibrium state. From the analyses of safety against sliding, it was found that a cantilever retaining wall with sloped base was the most efficient type in earthquake resistant design. It was also found that by sloping the base, the width of the base slab could be reduced, resulting in the least volume of concrete, excavation and backfill as compared to the other types of walls. In the case of a cantilever retaining wall with sloped feel, the efficiency similar to that of a wall with sloped base could be expected under static loading as well as at relatively low level of earthquake loading. However, this efficiency became vanished with the increase of horizontal acceleration coefficient, since the rate of reduction in developed earth pressures on the heel became smaller. In addition, the design charts with different soil friction angles as well as with different earthquake resistant design criteria of safety factor against sliding were presented for the design of cantilever retaining walls sith sloped base.

  • PDF

A Study for Korea Small Business Enterprise Policy and Vision (중소기업의 정책방안과 비전에 관한 연구)

  • Heo Kap-Soo
    • Management & Information Systems Review
    • /
    • v.15
    • /
    • pp.109-145
    • /
    • 2004
  • Upcoming 21st century, Management circumstance for a small and medium enterprise have been rapidly changed by Knowledge management, Informationization, Hi-technology. Changing from an era of small concept to strong concept, It will be a severe innovation period and can not survive with life as the same as the past, It is the era of best which mean only the best can survive, None of the average faculty can survive. Due to rapid proceeding of innovation of Informationization, It stimulate acceleration of technology innovation, infinity competition regardless the nation boarder, result in proceeding to Informationization. A small and medium enterprise is defined as smaller size of business than big business as point of capital, employee, output. It is concept, which usually used against concept of big business. When define a small and medium enterprise, criteria to determine a small and medium enterprise is depends on country and a category of business. However, In every country, A small and medium enterprise is getting be bigger and importance factor in whole industry. A small and medium enterprise is well developed and also well balanced with a large enterprise in the developed country. All around in the world, Interest about a small and medium enterprise is becoming higher. It is actively researching into a small and medium enterprise as the mean to create new employment, new industry, as means to from integration of a all and medium enterprise,as source of high competitive power. The status quo of rapid changing into informationization have been realized at considerable level in Korea. Information society is defined as information technology is main key to determine individuals competitiveness, which can solve effectively the side effect result from industrialization. It cleary imply that information technology is the most promising and important industry in 21st century. Therefore, We should seek to foster independent a small and medium enterprise and develop them corresponding to new concept of a small and medium enterprise in 21st century. The main frame of policy should be new economic system, which can contribute establishment of a small and medium enterprise, management innovation. It also attribute a small and medium enterprise to reveal their creative. New economic paradigm in 21st will be expanded with organization, market, technology. So far, a small and medium enterprise has been acknowledge as economic weaker and the one should be protected. However, In 21st century a small and medium enterprise will be considered as active majority or a source of creative. Development of technology to produce a small quantity with variety product and acceleration of knowledge and informationization will result in comparative merits of a small and medium enterprise. Hereby, The role and relative importance of a small and medium enterprise in our economic will getting be larger and It will be developed as the main force to activate the economic. However, Only a small and medium enterprise, which overcome difficulty with active desire and effort to improve their lot can be developed as a competitive enterprise in 21st century in considering themselves to be developed as diversity, active, independent, business by an enterprise.

  • PDF

A Study on the Seismic Response Formula for Improvement of Seismic Design Code of Water Treatment Underground Structures (수처리 지중구조물의 내진설계 기준 개선을 위한 지진 응답 제안식의 관한 연구)

  • Lee, Joung-Bae;Bae, Sang-Soo;Chung, Kwang-Mo;Bang, Myung-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.41-48
    • /
    • 2022
  • Generally it was known that member forces in the earthquake resistant design is lower than those in the general design. But it is not true in cases of water treatment underground structures, which is different in each case like water treatment plant, sedimentation basin, and utility-pipe conduit. Also, looking at the scale of earthquakes that have recently occurred in Korea, large-scale earthquakes are frequent, so when the magnitude of the design seismic force increases, it is necessary to investigate the seismic behavior of the water treatment underground structure and to deal with it. In this study the change rate of member forces was investigated by the change of design load factor (earthquake acceleration design criteria), earth depth, underground water level. The pseudo-static analysis and response displacement method was applied, and various analyzes were conducted depending on the ground water and soil depth. The proposed formula in this study will be efficient when the earthquake design code of water treatment underground structures is revised.

Evaluation of Vertical Vibration Performance of Tridimensional Hybrid Isolation System for Traffic Loads (교통하중에 대한 3차원 하이브리드 면진시스템의 수직 진동성능 평가)

  • Yonghun Lee;Sang-Hyun Lee;Moo-Won Hur
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.70-81
    • /
    • 2024
  • In this study, Tridimensional Hybrid Isolation System(THIS) was proposed as a vibration isolator for traffic loads, combining vertical and horizontal isolation systems. Its efficacy in improving serviceability for vertical vibration was analytically evaluated. Firstly, for the analysis, the major vibration modes of the existing apartment were identified through eigenvalue analysis for the system and pulse response analysis for the bedroom slab using commercial structural analysis software. Subsequently, a 16-story model with horizontal, vertical and rotational degrees of freedom for each slab was numerically organized to represent the achieved modes. The dynamic analysis for the measured acceleration from an adjacent ground to high-speed railway was performed by state-space equations with the stiffness and damping ratio of THIS as variables. The result indicated that as the vertical period ratio increased, the threshold period ratio where the slab response started to be suppressed varied. Specifically, when the period ratio is greater than or equal to 5, the acceleration levels of all slabs decreased to approximately 70% or less compared to the non-isolated condition. On the other hand, it was ascertained that the influence of damping ratios on the response control of THIS is inconsequential in the analysis. Finally, the improvement in vertical vibration performance of THIS was evaluated according to design guidelines for floor vibration of AIJ, SCI and AISC. It was confirmed that, after the application of THIS, the residential performance criteria were met, whereas the non-isolated structure failed to satisfy them.