• Title/Summary/Keyword: acceleration control

Search Result 1,478, Processing Time 0.031 seconds

Study of Human Perceptual Characteristics of Body Inclination Using a Tilt Bed

  • Inooka, Hikaru;Kim, HiSik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.94.2-94
    • /
    • 2001
  • This paper investigates human discomfort response to the foot-to-head acceleration. During ambulance transport, a patient suffers from the foot-to-head acceleration, which might deteriorate his illness. To investigate the relationship between the ride discomfort and the foot-to-head acceleration, experiments were performed using a van type automobile similar to an ambulance. The experimental results show that head-ward acceleration is more uncomfortable than the foot-ward acceleration. For further investigation of the difference of ride discomfort caused by the direction of acceleration, two experiments were peformed using a tilt bed. In these experiments, foot-to-head acceleration is applied to the subjects by tilting the bed. Using a tilt bed, we investigated two things; relationship between discomfort and inclination of the bed ...

  • PDF

Dynamic Interaction Analysis between Maglev Train with Airgap Control Algorithm Based on Acceleration Feedback and Guideway (가속도 되먹임 기반 부상공극제어기법을 이용한 자기부상열차-가이드웨이 상호작용 해석)

  • Lee, Jin Ho;Kim, Sung Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.193-199
    • /
    • 2016
  • Since the variations of electromagnetic suspension forces of maglev trains have close relations with the acceleration of the levitated bodies, it is basic to control the levitation forces using the measured acceleration of vehicles. In this study, an airgap control algorithm based on acceleration feedback is applied to maglev trains and a dynamic analysis method is developed considering maglev train-guideway interaction. Using the developed method, dynamic behaviors of a maglev train-guideway interaction system are investigated. It is observed from the analysis that the current design guidelines can be satisfied when the proposed airgap control algorithm is employed. Using the contorl algorithm, the current guidelines can be improved and economical maglev railway guideway structures can be designed.

The Effects of Cognitive Acceleration Instructional Strategies Applied to Unit of 'The Light and Shadow' in Elementary School (초등학교 빛과 그림자 단원에 적용한 인지 가속 수업 전략의 효과)

  • Jeong, Soon-Hwa;Kim, Sun-Ja;Park, Jong-Wook
    • Journal of Korean Elementary Science Education
    • /
    • v.28 no.3
    • /
    • pp.321-330
    • /
    • 2009
  • This study investigated the effects of teaching-learning lesson plan using cognitive acceleration instructional strategies applied to the unit, 'The Light and Shadow' in elementary school. Two classes of the second grade elementary students (N=63) in Chungcheongbukdo districts were assigned to control and treatment groups each, and were taught about 'The Light and Shadow' for 8 class hours. For the treatment group, teaching-learning lesson plan using cognitive acceleration instructional strategies developed by this research was applied. The traditional instruction by textbook and teacher's guides was used for the control group. All students were tested with the test for concept of the shadow and the test for academic achievement about the unit. As the result of the post-test, the scores of the treatment group were higher than those of the control group. However, it was not statistically meaningful difference. The scores of the treatment group were significantly higher than those of the control group in the delayed-post-test for concept of the shadow. No significant interaction was observed with respect to the students' gender, instruction and pre-level for the concept of the shadow. Data analysis indicated that the scores of the treatment group were significantly higher than those of the control group in the post-test and delayed- post-test for the concept of the shadow in the area of object permanence. Our research work shows the effectiveness of the teaching-learning lesson using cognitive acceleration instructional strategies for the development for concept of the shadow for elementary school students, and suggests the necessity for this kind of teaching-learning program in the fields.

  • PDF

Investigation for the Characters of Human Perception Level according to Acceleration Value Parameters (가속도 크기 변수에 따른 수직진동에 대한 인지수준 고찰)

  • Lee, MinJung;Han, SangWhan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.731-740
    • /
    • 2014
  • Occupants induced floor vertical vibrations may cause other occupant's annoyance and lead to social loss. To help control such floor vibrations, several criteria have been developed mostly based on human perception tests and floor vibration tests. Floor vibration is evaluated by comparison with criteria and vibration parameters of subject floor, such as frequency, damping ratio, acceleration value, vibration duration time and occurrence frequency. Three acceleration value parameters are used in criteria; peak acceleration, rms acceleration and VDV, when a floor vibration serviceability is evaluated. Meanwhile rms acceleration and peak acceleration are adopted as vibration limit value in criteria and researches of human perception for vibration. Occupants induced floor vibration is transient rather than steady state. However, rms acceleration is not reliable parameter for evaluating transient vibration. The objective of this study is to investigate the characters of human perception level according to acceleration value parameters for vibration induced by heel impacts and walking activities.

TRANSIENT PERFORMANCE OF AN SI ENGINE BY TRANSIENT RESPONSE SPECIFICATIONS

  • Kwark, J.H.;Jeon, C.H.;Chang, Y.J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.109-117
    • /
    • 2003
  • The analysis and evaluation of the transient performance by the transient response specifications under various acceleration speeds and types based on driver's typical acceleration habit are implemented by the experimental study to provide the appropriate direction for the transient control in a gasoline engine. The concept of the transient response specifications which consist of delay time, rising time, maximum overshoot and settling time, and the analysis method using them are introduced to evaluate the characteristics of the transient performance quantitatively. Furthermore four acceleration speeds and four acceleration types are set respectively to realize the various transient states which are similar to the real drive. Several performance parameters in terms of engine speed, manifold absolute pressure, fuel injection duration and air excess ratio are measured simultaneously during the various acceleration using a throttle actuator controlled by a PC. The transient response specifications characterized well the transient performance for the various acceleration speed and types quantitatively. Delay and rising time with increment of the acceleration speed became shorter, but settling time did longer. Intensified acceleration type appeared to be the most economical in view of fuel consumption, and linear acceleration type was found to have the least harmful emission concentration.

Reference Trajectory Design for Atmosphere Re-entry of Transportation Mechanical Structure (수송기계구조물의 대기권 재진입 기준궤도 설계)

  • Park, J.H.;Eom, W.S.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.67-73
    • /
    • 2003
  • The entry guidance design involves trajectory optimization and generation of a drag acceleration profile as the satisfaction of trajectory conditions during the entry flight. The reference trajectory is parameterized and optimized as piecewise linear functions of the velocity. A regularization technique is employed to achieve desired properties of the optimal drag profile. The regularized problem has smoothness properties and the minimization of performance index then prevents the drag acceleration from varying too fast, thus eliminating discontinuities. This paper shows the trajectory control using the simple control law as well as the information of reference drag acceleration.

  • PDF

Dynamic Mass-measurement control System of Acceleration and Displacement Sensing Type (가속도 변위 검출형 동적 질량 측정 제어 시스템)

  • Kim, B.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.109-116
    • /
    • 1994
  • Quickness and precision are the two most important requirements for an industrial scale used in production lines. In this paper, a new approach, "Dynamic-Mass measurement control System of Acceleration and Displacement(DMS-AD) sensing", is presented to improve some of drowbacks in conventional scales. The system, consisted of acceleration and displace- ment sensors, spring scale and microcomputer, is based on full utilization of dynamic mass measurement of acceleration and displacement via microcomputer-assisted real time monitoring. The rsulting system, when combined with appropriate dynamic mass estimation algorithm software, has shown its effectiveness in terms of two desirable characteristics required. required.

  • PDF

Friction Identification without Information of Acceleration (가속도 정보를 사용하지 않는 마찰계수 식별방법)

  • Kim, Sung-Yeol;Ha, In-Joong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.3
    • /
    • pp.89-95
    • /
    • 2002
  • This paper describes a new identification method for friction in motion control systems, in which the friction model is not necessarily linear in parameters. The proposed method works well with any measurement data of velocity and input control force, as long as the initial and final velocities are identical. Most importantly, the proposed method does not require the information of acceleration for its implementation, in contrast with the previously known methods. This is due to the orthogonality property between acceleration and a function of velocity. In particular, if the parametric model is linear in parameters, its friction parameters can be identified in closed form without resorting to numerical search methods. To illuminate further the generality and practicality of the proposed friction identification method, we show good performance of the proposed method through some simulation results.

Active contrl of an ambulane\ce stretcher: Simulation study

  • Sagawa, K.;Inooka, H.;Ino-Oka, E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.100-105
    • /
    • 1994
  • In this paper, we discuss a method for design of an ambulance stretcher which call decrease blood pressure fluctuation caused by ambulance acceleration. Recently, a lot of stretchers which can isolate the vertical vibration to reduce body resonances (4-10 Hz) have been used during ambulance transport. However, we have found that blood pressure of a patient laying in the stretcher fluctuates when the ambulance accelerates or decelerates. Since the enforced change of the blood pressure may deteriorate the patent's condition, a stretcher to cancel head-to-foot acceleration and to decrease the blood pressure variation (BPV) is expected for safe transport. We propose a method to design a stretcher which is tilted according to an adequate angle to cancel head-to-foot acceleration by gravity when the ambulance accelerates or decelerates. A control method of the stretcher is constructed by means of simulation analysis using acceleration data measured during ambulance transport. It is confirmed that the active controlled stretcher proposed has good performance for the BPV reduction.

  • PDF

Kinematic Correction of n Differential Drive Mobile Robot and a Design for the Reference-Velocity Trajectory with Acceleration-Resolution Constraint on Motor Controllers (차동 구륜이동로봇의 기구학적 보정과 모터제어기의 가속도 해상도 제약을 고려한 기준속도궤적의 설계)

  • 문종우;김종수;박세승
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.498-505
    • /
    • 2002
  • Reducing odometer errors caused by kinematic imperfections in wheeled mobile robots is imestigated. Wheel diameters and wheelbase are corrected by using encoders without landmarks. A new velocity trajectory is proposed that compensates for an orientation error due to acceleration- resolution constraints on motor controllers. Based on this velocity trajectory, the wheel velocity of one out of two driven wheels may be changed by the traveled distance of the mobile robot. It is shown that a wheeled mobile robot can't move along a straight line exactly, even if kinematic correction are achieved perfectly, and this phenomenon is attributable to acceleration-resolution constraints on motor controllers. We experiment on a wheeled mobile robot with 2 d.o.f. are used in the experiment to verify the proposed scheme.