• Title/Summary/Keyword: acceleration control

Search Result 1,472, Processing Time 0.024 seconds

Development o f Acceleration/deceleration Function for Real-time Control of Autonomous Mobile Robots (자율 이동 로봇의 실시간 제어를 위한 가.감속 함수의 개발)

  • 이수종;정원지
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.36-41
    • /
    • 2001
  • This article presents a new acceleration/deceleration method for real-time control of autonomous mobile robots. In this method, a function which produces the table of acceleration/deceleration in real-time is proposed. This function, while sat- isfying the basic concept of mechanics, can choose both various ranges of velocity and distance ranges for the selected velocities. Moreover it can control motors in real time. This function is convenient to be realized by programming. In addi- tion, it is faster than other functions because it can be written by assembly language.

  • PDF

DC Servo Motor Position Control System Based on Model Following Acceleration Control (모델추종 가속도제어기법을 이용한 직류서보전동기 위치제어계)

  • Park, Young-Jeen;Lee, Kee-Sang;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.261-264
    • /
    • 1995
  • A scheme of observer-based MFAC(Model Following Acceleration Control) system is proposed for the DC servo position control system. The proposed system is competed of MFAC, feedback controller, and reduced-order state observer. As the servo motor is controlled by the acceleration command, the total servo system becomes the acceleration control system. Simulation results show that the proposed system have robust properties against parameter variations and external disturbances.

  • PDF

Early adjusting damping force for sloped rolling-type seismic isolators based on earthquake early warning information

  • Hsu, Ting-Yu;Huang, Chih-Hua;Wang, Shiang-Jung
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.39-53
    • /
    • 2021
  • By means of installing sloped rolling-type seismic isolators (SRI), the horizontal acceleration transmitted to the to-be-protected object above can be effectively and significantly reduced under external disturbance. To prevent the maximum horizontal displacement response of SRI from reaching a threshold, designing large and conservative damping force for SRI might be required, which will also enlarge the transmitted acceleration response. In a word, when adopting seismic isolation, minimizing acceleration or displacement responses is always a trade-off. Therefore, this paper proposes that by exploiting the possible information provided by an earthquake early warning system, the damping force applied to SRI which can better control both acceleration and displacement responses might be determined in advance and accordingly adjusted in a semi-active control manner. By using a large number of ground motion records with peak ground acceleration not less than 80 gal, the numerical results present that the maximum horizontal displacement response of SRI is highly correlated with and proportional to some important parameters of input excitations, the velocity pulse energy rate and peak velocity in particular. A control law employing the basic form of hyperbolic tangent function and two objective functions are considered in this study for conceptually developing suitable control algorithms. Compared with the numerical results of simply designing a constant, large damping factor to prevent SRI from pounding, adopting the recommended control algorithms can have more than 60% reduction of acceleration responses in average under the excitations. More importantly, it is effective in reducing acceleration responses under approximately 98% of the excitations.

Controlling Position of Virtual Reality Contents with Mouth-Wind and Acceleration Sensor

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.4
    • /
    • pp.57-63
    • /
    • 2019
  • In this paper, we propose a new framework to control VR(Virtual reality) contents in real time using user's mouth-wind and acceleration sensor of mobile device. In VR, user interaction technology is important, but various user interface methods is still lacking. Most of the interaction technologies are hand touch screen touch or motion recognition. We propose a new interface technology that can interact with VR contents in real time using user's mouth-wind method with acceleration sensor. The direction of the mouth-wind is determined using the angle and position between the user and the mobile device, and the control position is adjusted using the acceleration sensor of the mobile device. Noise included in the size of the mouth wind is refined using a simple average filter. In order to demonstrate the superiority of the proposed technology, we show the result of interacting with contents in game and simulation in real time by applying control position and mouth-wind external force to the game.

SOFTWARE LINEAR AND EZPONENTIAL ACELERATION/DECELERTION METHODS FOR INDUSTRIAL ROBOTS AND CNC MACHINE TOOLS

  • Kim, Dong-Il;Song, Jin-Il;Lim, Yong-Gtu;Kim, Sungkwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1904-1909
    • /
    • 1991
  • Software linear and exponential acceleration/deceleration algorithms for control of machine axes of motion in industrial robots and CNC machine tools are proposed. Typical hardware systems used to accelerate and decelerate axes of motion are mathematically analyzed. Discrete-time state equations are derived from the mathematical analyses for the development of software acceleration/deceleration algorithms. Synchronous control method of multiple axes of motion in industrial robots and CNC machine tools is shown to be easily obtained on the basis of the proposed acceleration/deceleration algorithms. The path error analyses are carried out for the case where the software linear and exponential acceleration/deceleration algorithms are applied to a circular interpolator. A motion control system based on a floating point digital signal processor (DSP) TMS 320C30 is developed in order to implement the proposed algorithms. Experimental results demonstrate that the developed algorithms and the motion control system are available for control of multiple axes and nonlinear motion composed of a combination of lines and circles which industrial robots and CNC machine tools require.

  • PDF

Development of Acceleration/Deceleration Method for Real-time Control of Autonomous Mobile Robots (자율 이동 로봇의 실시간 제어를 위한 가.감속 방법의 개발)

  • 이수종
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.667-672
    • /
    • 2000
  • This article presents a new acceleration/deceleration method for real-time control of autonomous mobile robots. In this method, a function which produces the table of acceleration/deceleration in real-time is proposed. This function, while satisfying the basic concept of mechanics, can choose both various ranges of velocity and distance ranges for the selected velocities. Moreover it can control motors with real time. This function is convenient to be realized by programming. and it is faster than other functions because it can be made by assembly language.

  • PDF

A New Induction Motor Drive Based on the Flux Vector Acceleration Method (자계벡터 가속법에 기초한 유도 전동기의 구동)

  • Jung, Seoung-Hwan;Hong, Soon-Ill;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.701-702
    • /
    • 2006
  • A novel control strategy for the induction motor drive, based on the field acceleration method, is presented. The torque is controlled through variations of the stator flux angular velocity. The stator flux is controlled by using a feed forward control scheme, with the stator flux reference vector adjusted so as to obtain the fixed rotor flux amplitude.

  • PDF

Properties of ATMD with Acceleration Feedback System (가속도귀환방식에 의한 ATMD의 특성)

  • 최민호;강병두;노필성;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.242-249
    • /
    • 1995
  • In order to search more efficient structural control algorithm, several closed-loop algorithm are developed. Among those, feedback control algorithm using parameters as displacement velocity, and acceleration has been studied. In this paper, especially the characteristics of accleration feedback is studied as more efficient control algorithm than any others. Furthermore the fact that ATMD with acceleration feedback system further reduce the variance of structural displacement rather than with displacement or velocity feedback system will be examined and proved.

  • PDF

Mobility and Agility of Multi-legged Walking Robot System (다족 보행 로봇 시스템의 이동성 및 민첩성)

  • Shim, Hyung-Won;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1146-1154
    • /
    • 2008
  • This paper presents a method for the acceleration analysis of multi-legged walking robots in consideration of the frictional ground contact. This method is based on both unified dynamic equation for finding the acceleration of a robot's body and constraint equation for satisfying no-slip condition. After the dynamic equation representing relationship between actuator torques and body acceleration, is derived from the force and acceleration relationship between foot and body's gravity center, the constraint equation is formulated to reconfigure the maximum torque boundaries satisfying no-slip condition from given original actuator torque boundaries. From application of the reconfigured torques to the dynamic equation, interested acceleration boundaries are obtained. The approach based on above two equations, is adapted to the changes of degree-of-freedoms of legs as well as friction of ground. And the method provides the maximum translational and rotational acceleration boundaries of body's center that are achievable in every direction without occurring slipping at the contact points or saturating all actuators. Given the torque limits in infinite normsense, the resultant accelerations are derived as a polytope. From the proposed method, we obtained achievable acceleration boundaries of 4-legged and 6-legged walking robot system successfully.

Study on Improving Stability of 6×6 Skid-Steering Vehicle by Employing Skyhook Control Method (스카이 훅 제어를 이용한 6×6 견마 차량의 주행 안정성 향상 방안 연구)

  • Jeon, Su-Hee;Lee, Jeong-Han;Yoo, Wan-Suk;Kim, Jae-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.905-912
    • /
    • 2011
  • In order to protect equipment such as controllers, it is important to improve the driving stability of $6{\times}6$ skidsteering vehicles driven on rough roads. The estimation and improvement of the driving stability should be based on the vertical acceleration, roll acceleration, and pitch acceleration. These variables will be used to achieve multivariable control and increase the vehicle driving stability. In this study, to improve vehicle stability by reducing the vertical acceleration, roll angular acceleration, and pitch angular acceleration, the skyhook control method is employed to control MR(Magnetorheological) dampers equipped with the vehicle. The proposed control system is tested in multibody dynamic simulation.