• Title/Summary/Keyword: accelerated diffusion coefficient

Search Result 54, Processing Time 0.022 seconds

Bonding Properties of 14K White-Red Gold Alloy by Diffusion Bonding Process (14K 화이트-레드골드의 확산접합 공정에 따른 접합 물성 연구)

  • Song, Jeongho;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.386-391
    • /
    • 2017
  • Using a customized diffusion bonder, we executed diffusion bonding for ring shaped white gold and red gold samples (inner, outer diameter, and thickness were 15.7, 18.7, and 3.0 mm, respectively) at a temperature of $780^{\circ}C$ and applied pressure of 2300 N in a vacuum of $5{\times}10^{-2}$ torr for 180 seconds. Optical microscopy, field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to investigate the microstructure and compositional changes. The mechanical properties were confirmed by Vickers hardness and shear strength tests. Optical microscopy and FE-SEM confirmed the uniform bonding interface, which was without defects such as micro pores. EDS mapping analysis confirmed that each gold alloy was 14K with the intended composition; Ni and Cu was included as coloring metals in the white and red gold alloys, respectively. The effective diffusion coefficient was estimated based on EDS line scanning. Individual values of Ni and Cu were $5.0{\times}10^{-8}cm^2/s$ and $8.9{\times}10^{-8}cm^2/s$, respectively. These values were as large as those of the melting points due to the accelerated diffusion in this customized diffusion bonder. Vickers hardness results showed that the hardness values of white gold and red gold were 127.83 and 103.04, respectively, due to solid solution strengthening. In addition, the value at the interface indicated no formation of intermetallic compound around the bonding interface. From the shear strength test, the sample was found not to be destroyed at up to 100,000 gf due to the high bonding strength. Therefore, these results confirm the successful diffusion bonding of 14K white-red golds with a diffusion bonder at a low temperature of $780^{\circ}C$ and a short processing time of 180 seconds.

Influence of Water-Cement Ratios and Curing Conditions on the Diffusion Characteristics of Chloride Ion in Concrete (콘크리트의 염소이온 확산특성에 미치는 물-시멘트비 및 양생조건의 영향)

  • Bae, Su-Ho;Lee, Kwang-Myong;Kim, Jee-Sang;Jung, Sang-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.753-759
    • /
    • 2006
  • To predict service life of concrete structures exposed to chloride attack, surface chloride concentration, diffusion coefficient of chloride ion, and chloride corrosion threshold value in concrete, are used as important factors. Of these, as the diffusion coefficient of chloride ion for concrete is strongly influenced by concrete quality and environmental conditions of structures and may significantly change the service life of structures, it is considered as the most important factor for service life prediction. The qualitative factors affecting the penetration and diffusion of chloride ion into concrete are water-cement (W/C) ratio, age, curing conditions, chloride ion concentration of given environment, wet and dry conditions, etc. In this paper the influence of W/C ratio and curing conditions on the diffusion characteristics of chloride ion in concrete was investigated through the chloride ion diffusion test. In the test, the voltages passing through the diffusion cell were measured by accelerated test method using potential difference, and then with the consideration of IR drop ratio the diffusion coefficient of chloride ion for concrete with different W/C ratios were estimated by Andrade's model. Furthermore, under different curing conditions formulas for the estimation of the diffusion coefficient of chloride ion have been proposed by the regression analysis considering the effect of W/C ratio and age.

Evaluation of Chloride Diffusion Characteristics in Concrete with Fly Ash Cured for 2 Years (2년 양생된 Fly Ash 콘크리트의 염화물 확산 특성 평가)

  • Yoon, Yong-Sik;Hwang, Sang-Hyeon;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.8-15
    • /
    • 2019
  • When RC(Reinforced Concrete) structures are exposed to harsh environment, deterioration phenomenon occurs, and the corrosion in rebar due to chloride intrusion is known as representative deterioration, so called chloride attack. In this paper, chloride resistance performance of 2 years aged concrete is evaluated considering 3 levels of water to binder ratio(0.37, 0.42, and 0.47) and 2 levels of substitution ratio of fly ash(0% and 30%). Accelerated chloride diffusion coefficient tests referred to Tang's method, total passed charge tests referred to ASTM C 1202, and compressive strength tests referred to KS F 2405 are performed. With adaptation of the previous test results and the results from this study, time-dependent chloride diffusion characteristics are analyzed for each concrete. The FA(Fly Ash) concrete has higher chloride resistance performance than OPC(Ordinary Portland Cement) concrete. According to the evaluation standard of ASTM C 1202, the FA concrete has "Moderate" grade after 49 days while OPC concrete does "Moderate" grade after 365 days. As the results of time-parameter for chloride diffusion, OPC concrete and FA concrete show the decreasing behavior of time-parameters with increasing water to binder ratio. Also, FA concrete has 1.57~2.74 times of time-parameter than OPC concrete. That's cause is thought that the time-parameter indicates the gradient of decreasing of diffusion coefficient. FA concrete has higher time-parameters than OPC concrete by pozzolanic reaction of FA.

Prediction of Carbonation Progress Using Diffusion Coefficient of $CO_2$ in the Atmosphere ($CO_2$ 산계수를 이용한 일반 대기환경에서의 중성화진행예측)

  • Kang, Suk-Pyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.141-147
    • /
    • 2010
  • The rate of carbonation is usually low in the natural environment due to the low $CO_2$ concentration in the atmosphere. Therefore, investigation of carbonation is usually conducted under accelerated testing conditions so as to speed up the process. This study is to predict carbonation progress by mathematical model, based on the diffusions of $CO_2$ and its reaction with $Ca(OH)_2$ in carbonation progressing region, in the atmosphere. To predict of carbonation progress in the atmosphere, we adopted a diffusion coefficient of $CO_2$ that agreed well the experimental value obtained by the accelerated carbonation test. Consequently the model can predict the rate of carbonation of concrete exposed in the atmosphere regardless of finishing materials.

Simplified Carbonation Model Considering Ca(OH)2 Solubility and Porosity Reduction (수산화칼슘 용해도와 공극률 감소를 고려한 간략화 된 탄산화 모델)

  • Lee, Yun;Kwon, Seung-Jun;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.128-138
    • /
    • 2015
  • Carbonation is one of the most critical deterioration phenomena to concrete structures exposed to high $CO_2$ concentration, sheltered from rain. Lots of researches have been performed on evaluation of carbonation depth and changes in hydrate compositions, however carbonation modeling is limitedly carried out due to complicated carbonic reaction and diffusion coefficient. This study presents a simplified carbonation model considering diffusion coefficient, solubility of $Ca(OH)_2$, porosity reduction, and carbonic reaction rate for low concentration. For verification, accelerated carbonation test with varying temperature and MIP (Mercury Intrusion Porosimetry) test are carried out, and carbonation depths are compared with those from the previous and the proposed model. Field data with low $CO_2$ concentration is compared with those from the proposed model. The proposed model shows very reasonable results like carbonation depth and consuming $Ca(OH)_2$ through reduced diffusion coefficient and porosity compared with the previous model.

Chloride Diffusion Coefficients in Cold Joint Concrete with GGBFS (고로슬래그 미분말을 혼입한 콜드조인트 콘크리트의 염화물 확산계수)

  • Oh, Kyeong-Seok;Mun, Jin-Man;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.44-49
    • /
    • 2016
  • Among the deteriorating agents, chloride ion is reported to be one of the most harmful ions due to its rapid diffusion and direct effect on steel corrosion. Cold joint which occurs in mass concrete placing is vulnerable to shear resistance and more severe deterioration. The paper presents an quantitative evaluation of chloride diffusion coefficient in OPC(Ordinary Portland Cement) and GGBFS(Ground Granulated Blast Furnace Slag) concrete containing cold joint. GGBFS concrete shows $6.6{\times}10^{-12}m^2/sec$ which is almost 30% level of OPC concrete results and the trend is repeated in the case of cold joint concrete. Compared with OPC concrete, GGBFS concrete is evaluated to have better resistance to chloride penetration, showing 0.30 times of chloride diffusion coefficient in concrete without cold joint 0.39 times with cold joint, respectively.

Study on Neutralization Progress Model of Concrete with Coating Finishing Materials in Outdoor Exposure Conditions Based on the Diffusion Reaction of Calcium Hydroxide

  • Park, Jae-Hong;Hasegawa, Takuya;Senbu, Osamu;Park, Dong-Cheon
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.3
    • /
    • pp.155-163
    • /
    • 2012
  • In order to predict the neutralization of concrete which is the reaction of carbonation dioxide from the outside and cement hydration product, such as calcium hydroxide and C-S-H, it was studied the numerical analysis method considering change of the pore structure and relative humidity during the neutralization reaction. Diffusion-reaction neutralization model was developed to predict the neutralization depth of concrete with coating finishing material. In order to build numerical analysis models considering outdoor environment and finishing materials, the adaption of proposed model was shown the results of existing outdoor exposure test results and accelerated carbonation test.

Chloride Diffusion Properties of Concrete with Corrosion Inhibitor (방청제를 함유한 콘크리트의 염소 이온 확산 특성)

  • 구현본;이광명;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.694-699
    • /
    • 2000
  • Recently, the degradation of reinforced concrete structures due to physical and chemical attack has been a major issue in construction engineering. One of the main causes of degradation of concrete structures can be ascribed to chloride-induced corrosion, i.e., the rapid penetration of chloride ions into concrete. To estimate durability of reinforced concrete structures exposed to marine environment, many different kinds of accelerated tests to evaluate the concrete diffusivity were proposed. In this study, present test methods are reviewed and a proper test method for concrete is selected. The diffusion coefficients of concrete with corrosion inhibitor are measured using the proposed method, and then, measured values are compared to those of concrete without corrosion inhibitor. It is found from experimental results that diffusion coefficient re decreased with curing ages.

  • PDF

Modeling on Chloride Diffusivity in Concrete with Isotropic and Anisotropic Crack (등방성 및 이방성 균열을 가진 콘크리트의 염화물 확산계수 모델링)

  • Lee, Hack-Soo;Bae, Sang-Woon;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.104-111
    • /
    • 2013
  • Deterioration is accelerated due to additional intrusion of chloride ion in crack width in cracked concrete. In this paper, modeling on equivalent diffusion coefficient in cracked concrete is performed for 1-D (Anisotropic) and 2-D (Isotropic) diffusion based on steady state condition. In the previous research, rectangular shape of crack was considered but the shape was modified to wedge shape with torturity. For verification of the proposed model, crack is induced in concrete sample and migration test in steady state is performed for 1-D diffusion. For 2-D diffusion, previous test results are adopted for verification. Through considering wedge shape of crack with torturity, diffusion coefficients in 1-D and 2-D diffusion are reduced, and the more reasonable prediction is obtained. The results from the proposed model with torturity of 0.10~0.15 are shown to be in the best agreement with the test results.

Physical and Mechanical Properties of Cementitious Specimens Exposed to an Electrochemically Derived Accelerated Leaching of Calcium

  • Babaahmadi, Arezou;Tang, Luping;Abbas, Zareen;Martensson, Per
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.295-306
    • /
    • 2015
  • Simulating natural leaching process for cementitious materials is essential to perform long-term safety assessments of repositories for nuclear waste. However, the current test methods in literature are time consuming, limited to crushed material and often produce small size samples which are not suitable for further testing. This paper presents the results from the study of the physical (gas permeability as well as chloride diffusion coefficient) and mechanical properties (tensile and compressive strength and elastic modulus) of solid cementitious specimens which have been depleted in calcium by the use of a newly developed method for accelerated calcium leaching of solid specimens of flexible size. The results show that up to 4 times increase in capillary water absorption, 10 times higher gas permeability and at least 3 times higher chloride diffusion rate, is expected due to complete leaching of the Portlandite. This coincides with a 70 % decrease in mechanical strength and more than 40 % decrease in elastic modulus.