• Title/Summary/Keyword: accelerated corrosion

Search Result 443, Processing Time 0.034 seconds

Dynamic Boric Acid Corrosion of Low Alloy Steel for Reactor Pressure Vessel of PWR using Mockup Test (가압형 경수로 압력용기 재료인 저합금강의 동적 붕산 부식 실증 연구)

  • Kim, Sung-Woo;Kim, Hong-Pyo;Hwang, Seong-Sik
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.85-92
    • /
    • 2013
  • This work is concerned with an evaluation of dynamic boric acid corrosion (BAC) of low alloy steel for reactor pressure vessel of a pressurized water reactor (PWR). Mockup test method was newly established to investigate dynamic BAC of the low alloy steel under various conditions simulating a primary water leakage incident. The average corrosion rate was measured from the weight loss of the low alloy steel specimen, and the maximum corrosion rate was obtained by the surface profilometry after the mockup test. The corrosion rates increased with the rise of the leakage rate of the primary water containing boric acid, and the presence of oxygen dissolved in the primary water also accelerated the corrosion. From the specimen surface analysis, it was found that typical flow-accelerated corrosion and jet-impingement occurred under two-phase fluid of water droplet and steam environment. The maximum corrosion rate was determined as 5.97 mm/year at the leakage rate of 20 cc/min of the primary water with a saturated content of oxygen within the range of experimental condition of this work.

A Study on Correlation Between Cyclic Drying-Wetting Accelerated Corrosion Test and Long-term Exposure Test (건습반복 부식촉진시험 및 장기폭로시험의 상관성에 대한 연구)

  • Park, Sang-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.136-143
    • /
    • 2016
  • There are various method for evaluating the durability life of concrete structures due to salt damage. The best way is to perform a corrosion test for a rebar embedded in concrete specimen was exposure to marine environment. However, this method has the disadvantage that it takes a long period of time. Also, accelerated corrosion test which was complemented complements the time-consuming weakness is limited to apply because it could not reveal a correlation between long-term exposure test. Accordingly, the purpose of this study is to derive a correlation coefficient between cycle drying-wetting accelerated corrosion test and long-term exposure test. Corrosion initiation time was measured in four types of concrete samples, i.e., two samples mixed with fly ash(FA) and blast furnace slag(BS), and the other two samples having two water/cement ratio(W/C = 0.6, 0.35) without admixture(OPC 60 and OPC 35). The accelerated corrosion test was carried out by two case, i.e., one is a cyclic drying-wetting method(case 1), and the other is a artificial seawater ponding test method(case 2). Whether corrosion occurs, it was measures using half-cell potential method. The results indicated that case 1 is to accelerated the corrosion of rebar about 24~36% as compared with case 2, then the corrosion of rebar embedded in concrete occurred according to the order of OPC60, FA, BS, OPC35. Correlation coefficient between accelerated corrosion test and long-term exposure test, case 1 is 4.23 to 5.42, and case 2 is 6.54 to 7.82.

Evaluation of Life Time for Anti-Corrosive Methods for Marine Steel Sheet by Cyclic Corrosion Test (실내 가속부식시험을 통한 해양 강관합성 말뚝의 방식 기법 수명 평가)

  • Park, J.W.;Lee, J.G.;Lee, K.W.;Kim, J.H.;Jung, M.K.;Lee, J.H.
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.243-250
    • /
    • 2009
  • When a steel sheet pipe applied to marine environment, an anti-corrosive coating should be treated to obtain long-term life-time for steels, especially, splash zone. Although anti-corrosive property of coatings is required to be tested in real marine environment, it is difficult because of long test time such as 20 years or more time. Therefore, we used cyclic corrosion tester in a laboratory, which has similar conditions with salt-dry-wet process such as real marine environment. Anti-corrosive properties of the coatings and two steels were tested their anti-corrosive properties under cyclic corrosion test conditions(KS D ISO 14993) and the results were compared with estimate life-time in real marine environment. According to cyclic corrosion test, accelerated corrosive factor of each anti-corrosive coating was investigated accelerated corrosive factor from impedance with EIS method. Accelerated corrosive factor of type SS400 carbon steel and A690 was also investigated their accelerated corrosive factor from the regression curves of weigh loss results. One of the anti-corrosive coatings showed about 50 years life-time compared with standard sample life-time. Carbon steel SS400 showed from 0.1 mm/yr to 0.06 mm/yr as its corrosion rate.

A New Method on the Prediction of Corrosion Resistance of Reinforced Concrete Using Accelerated Potentiometric Corrosion Method (전위차 부식촉진법을 이용한 철근 콘크리트의 내부식성 예측을 위한 새로운 기법 연구)

  • 오병환;조윤구;차수원;정원기
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.201-209
    • /
    • 1996
  • Recently, large scale concrete structures exposed to severe environment are increasingly built in various locations. The corrosion may severely affect the durability and service life of such a concrete structure. It is, therefore, necessary to develop durable concrete to enhance the corrosion resistance. The corrosion resistance of concrete can be identified through accelerated corrosion test. The purpose of the present paper is, therefore, to devise a reasonable and accurate method to predict the amount of corrosion of reinforcing steels. The proposed method which is basically based on the concept of Faraday's Law, determines the corroded amount of a rebar according to accelerated corrosion time. The corrosion is accelerated by employing the potentiometric corrosion test arrangement. The effects of admixtures in concrete including fly ash and silica fume have been also studied to explore the relative corrosion resistance of concrete.

A Study on Flow-Accelerated Corrosion of SA106 Gr.C Weldment (SA106 Gr.C강 용접재에서의 유체가속부식(FAC) 현상 연구)

  • Zheng Yugui
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.334-341
    • /
    • 2001
  • The chemical and geometric effects of weld on flow-accelerated corrosion (FAC) of SA106 Gr.C low alloy steel pipe in 3.5wt% NaCl and simulated feedwater of nuclear power plant have been investigated by using rotating cylinder electrode. Polarization test and weight loss test were conducted and compared at rotating speed of 2000rpm (3.14m/s) with the variables of chemical and geometric parameters. The results showed that the chemical effects were relatively larger than the geometric effects, and the welded parts were the local anode and preferentially corroded, which could be explained by the differences between microstructural and compositional parameters. On the other hand, under active corrosion conditions, the heat affected zone were severely corroded and microstructural effects became the important role in the whole process.

  • PDF

Study on Increasing High Temperature pH(t) to Reduce Iron Corrosion Products (철부식생성물 저감을 위한 고온 pH(t) 상향 연구)

  • Shin, Dong-Man;Hur, Nam-Yong;Kim, Wang-Bae
    • Corrosion Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.175-179
    • /
    • 2011
  • The transportation and deposition of iron corrosion products are important elements that affect both the steam generator (SG) integrity and secondary system in pressurized water reactor (PWR) nuclear power plants. Most of iron corrosion products are generated on carbon steel materials due to flow accelerated corrosion (FAC). The several parameters like water chemistry, temperature, hydrodynamic, and steel composition affect FAC. It is well established that the at-temperature pH of the deaerated water system has a first order effect on the FAC rate of carbon steels through nuclear industry researches. In order to reduce transportation and deposition of iron corrosion products, increasing pH(t) tests were applied on secondary system of A, B units. Increasing pH(t) successfully reduced flow accelerated corrosion. The effect of increasing pH(t) to inhibit FAC was identified through the experiment and pH(t) evaluation in this paper.

Estimation of Chloride Corrosion Threshold Value in Concrete by Using Electrochemical and Cyclic Wet and Dry Seawater Method (전기화학적 및 해수 건습반복 방법에 의한 콘크리트 내의 임계 염화물량 평가)

  • Bae Su Ho;Lee Kwang Myong;Chung Young Soo;Kim Jee Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.245-248
    • /
    • 2005
  • It should be noted that the critical chloride threshold level is not considered to be a unique value for all conditions. This value is dependent on concrete mixture proportions, cement type and constituents, presence of admixtures, environmental factors, steel reinforcement surface. conditions, and other factors. In this study, the accelerated corrosion test for reinforcing steel was conducted by electrochemical and cyclic wet and dry seawater method, respectively and during the test, corrosion monitoring by half cell potential method was carried out to estimate the chloride corrosion threshold value when corrosion for reinforcing steel in concrete was perceived. For this purpose, lollypop and right hexahedron test specimens were made for 31.4$\%$, 41.5$\%$ and 49.7$\%$ of w/c, respectively and then the accelerated corrosion test for reinforcing steel was executed. It was observed from the test that the time to initiation of corrosion was found to be different with water-cement ratio and accelerated corrosion test method, respectively and the chloride corrosion threshold value was found to range from 0.91 to 1.43 kg/$m^{3}$.

  • PDF

Reliability Evaluation of ER Type Corrosion Sensor for Monitoring Corrosion of Piping System Under Accelerated Corrosion Environment (배관의 부식 상태 진단에 사용되는 ER 부식센서의 가속부식환경에서의 신뢰성 평가)

  • Hwang, Hyun-Kyu;Shin, Dong-Ho;Kim, Heon-Hui;Lee, Jung-Hyung
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.403-411
    • /
    • 2021
  • In this study, the reliability of a commercial ER-type corrosion sensor was evaluated under an accelerated corrosion environment to verify its suitability for application in monitoring of ship's seawater piping system. A closed-loop pump piping testbed was designed and constructed to compare the wall thickness reduction of the pipe and the response from the sensor. The sensor was attached inside the pipe near the outlet of the pump that was exposed to a 3.5% NaCl solution with or without copper accelerated acetic acid (CASS). The results demonstrated that the presence of CASS significantly increased the corrosivity of the solution as well as the thickness reduction of the pipe, as expected. On the other hand, the corrosion products formed by the solution with CASS were thicker compared with those without CASS. The sensor response to temperature variation was found to be a clear linear relationship for the solution without CASS but there was a non-linear relationship where CASS was present.

Corrosion Resistance of Cr-Bearing Rebar to Macrocell Corrosion Environment Induced by Localized Carbonation

  • Tae, Sung-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.17-22
    • /
    • 2006
  • Artificial cracks were made in the cover concrete of specimens embedding ten types of steel rebars of different Cr contents. The research aims for developing Cr-bearing steel rebars resistant to macrocell corrosion environments induced by cracking in cover concrete. The cracks were subjected to intensive penetration of carbon dioxide (carbonation specimens) to form macrocells. The carbonation specimens were then treated with accelerated corrosion curing, during which current macrocell corrosion density was measured. The corrosion area and loss from corrosion were also measured at the end of 105 cycles of this accelerated curing. The results of the study showed that Cr-bearing steel with Cr content of 5% or more suppressed corrosion in a macrocell corrosion environment induced by the differences in the pH values due to carbonation of cracked parts. Cr-bearing steels with Cr content of 7% or more are proven to possess excellent corrosion resistance.