• Title/Summary/Keyword: absorbing aerosol

Search Result 19, Processing Time 0.026 seconds

Exploiting GOCI-II UV Channel to Observe Absorbing Aerosols (GOCI-II 자외선 채널을 활용한 흡수성 에어로졸 관측)

  • Lee, Seoyoung;Kim, Jhoon;Ahn, Jae-Hyun;Lim, Hyunkwang;Cho, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1697-1707
    • /
    • 2021
  • On 19 February 2020, the 2nd Geostationary Ocean Color Imager (GOCI-II), a maritime sensor of GEO-KOMPSAT-2B, was launched. The GOCI-II instrument expands the scope of aerosol retrieval research with its improved performance compared to the former instrument (GOCI). In particular, the newly included UV band at 380 nm plays a significant role in improving the sensitivity of GOCI-II observations to the absorbing aerosols. In this study, we calculated the aerosol index and detected absorbing aerosols from January to June 2021 using GOCI-II 380 and 412 nm channels. Compared to the TROPOMI aerosol index, the GOCI-II aerosol index showed a positive bias, but the dust pixels still could be clearly distinguished from the cloud and clear pixels. The high GOCI-II aerosol index coincided with ground-based observations indicating dust aerosols were detected. We found that 70.5% of dust and 80% of moderately-absorbing fine aerosols detected from the ground had GOCI-II aerosol indices larger than the 75th percentile through the whole study period.

Effects of Aerosol Optical Properties on Upward Shortwave Flux in the Presence of Aerosol and Cloud layers (구름과 에어로솔의 혼재시 에어로솔의 광학특성이 상향 단파 복사에 미치는 영향)

  • Lee, Kwon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.301-311
    • /
    • 2017
  • Aerosol optical properties as well as vertical location of layer can alter the radiative balance of the Earth by reflecting and absorbing solar radiation. In this study, radiative transfer model (RTM) and satellite-based analysis have been used to quantify the top-of-atmosphere (TOA) radiative effect of aerosol layers in the cloudy atmosphere of the northeast Asia. RTM simulation results show that the atmospheric warming effect of aerosols increases with their height in the presence of underlying cloud layer. This relationship is higher for stronger absorbing aerosols and higher surface albedo condition. Over study region ($20-50^{\circ}N$, $110-140^{\circ}E$) and aerosol event cases, it is possible to qualitatively identify absorbing aerosol effects in the presence of clouds by combining the UV Absorbing Aerosol Index (AAI) derived from Total Ozone Mapping Spectrometer (TOMS), cloud parameters derived from the Moderate Resolution Imaging Spectro-radiometer (MODIS), with TOA Upward Shortwave Flux (USF) from the Clouds and the Earth's Radiant Energy System (CERES). As the regional-mean radiative effect of aerosols, 6 - 26 % lower the USF between aerosols and cloud cover is taken into account. These results demonstrate the importance of estimation for the accurate quantification of aerosol's direct and indirect effect.

Estimation of Light Absorption by Brown Carbon Particles using Multi-wavelength Dual-spot Aethalometer (다파장 Dual-spot Aethalometer를 이용한 갈색탄소의 광흡수계수 평가)

  • Yu, Geun-Hye;Yu, Jae-Myeong;Park, Seung-Shik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.207-222
    • /
    • 2018
  • In this study, light absorption of carbonaceous species in $PM_{2.5}$ was investigated using a dual-spot 7-wavelength Aethalometer(model AE33) with 1-min time interval between January 01 and September 30, 2017 at an urban site of Gwangju. During the study period, two Asian dust (AD) events occurred in April (AD I) and May (AD II), respectively, during which light absorption in total suspended particles was observed. Black carbon (BC) was the dominant light absorbing aerosol component at all wavelengths over the study period. Light absorption coefficients by aerosol particles were found to have 2.7~3.3 times higher at 370 nm than at 880 nm. This would be attributed to light absorbing organic aerosols, which is called brown carbon (BrC), as well as BC as absorbing agents of aerosol particles. Monthly average absorption ${{\AA}}ngstr{\ddot{o}}m$ exponent ($AAE_{370-950nm}$) calculated over wavelength range of 370~950 nm ranged from 1.10 to 1.35, which was lower than the $AAE_{370-520nm}$ values ranging from 1.19~1.68 that was enhanced due to the presence of BrC. The estimated $AAE_{370-660nm}$ of BrC ranged from 2.2 to 7.5 with an average of 4.22, which was fairly consistent to the values reported by previous studies. The BrC absorption at 370 nm contributed 10.4~28.4% to the total aerosol absorption, with higher contribution in winter and spring and lower in summer. Average $PM_{10}$ and $PM_{2.5}$ concentrations were $108{\pm}36$ and $24{\pm}14{\mu}g/m^3$ during AD I, respectively, and $164{\pm}66$ and $43{\pm}26{\mu}g/m^3$ during AD II, respectively, implying the greater contribution of local pollution and/or regional pollution to $PM_{2.5}$ during the AD II. BC concentration and aerosol light absorption at 370 nm were relatively high in AD II, compared to those in AD I. Strong spectral dependence of aerosol light absorption was clearly found during the two AD events. $AAE_{370-660nm}$ of both light absorbing organic aerosols and dust particles during the AD I and II was $4.8{\pm}0.5$ and $6.2{\pm}0.7$, respectively. Higher AAE value during the AD II could be attributed to mixed enhanced urban pollution and dust aerosols. Absorption contribution by the light absorbing organic and dust aerosols estimated at 370 nm to the total light absorption was approximately 19% before and after the AD events, but it increased to 32.9~35.0% during the AD events. In conclusion, results from this study support enhancement of the aerosol light absorption due to Asian dust particles observed at the site.

Response of laser light active scattering aerosol spectrometer to light-absorbing aerosol particulates (광흡수성 분체입자에 대한 레이저산란광 분체입도측정기의 반응 특성)

  • Jeung, I. S.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.55-63
    • /
    • 1984
  • Berglund-Liu 진동방식 단분산 분체입자 발생기(Berglund-Liu vibrating orifice monodisperse aerosol generator)에 의하여 제작한 단분산 광흡수성 표준분체입자를 사용하여 레이저 산란광 분체입도 측정기 (Knollenberg active scattering aerosol spectrometer)의 반응특성을 조사하 였다. 실험결과, 기기의 반응특성은 Mie 산란이론에 의하여 계산한 이론치와 매우 잘 일치하며 특히 광흡수성 분체입자는 광통과성 분체입자가 다의적인 특성을 나타내는 것에 반하여 거의 단조증가하는 일의적인 특성을 가지고 있으며 광흡수성 분체입자의 반응특성이 제작자의 교정 치에 가까운 결과를 나타내었다.

  • PDF

A Study on the Characteristic and AOD Variation according to Aerosol Types Using AERONET Sunphotometer Data in Korea (AERONET 선포토미터 자료를 이용한 국내 에어로졸 유형별 특성과 광학적 두께 변화 연구)

  • Joo, Sohee;Dehkhoda, Naghmeh;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.93-101
    • /
    • 2020
  • For the first time in Korea, aerosol type was separated as PD (Pure dust), DDM (Dust Dominant Mixed), PDM (Pollution Dominant Mixed), NA (Non-Absorbing), WA (Weakly Absorbing), MA (Moderately Absorbing), and SA (Strongly Absorbing) using depolarization ratio and single-scattering albedo based on AERONET sunphotometer data. Then, seasonal and annual occurrence frequency and AOD variation are analyzed. The proportion of pollution aerosols (NA, WA, MA, SA combined) was 58.9, 46.2, 59.5, and 67.1% at Anmyeon, Gosan, Gwangju, Seoul, respectively, with Seoul being the highest and the lowest at Gosan. Annual rate changestended to increase NA and decrease PD and DDM. The AOD by type showed the highest NA at all sites. In addition, the ratio of NA and AOD continued to increase.

Analysis of Aerosol Optical Properties for High Particulate Matters and Light Asian Dust in Seoul Using GOCI (GOCI 자료를 이용한 서울 지역 고농도 미세먼지와 옅은 황사 시 에어로졸 광학적 특성 분석)

  • Kim, Deok-Rae;Choi, Won-Jun;Choi, Myungje;Kim, Jiyoung;Cho, Ara;Kim, Sang-Kyun;Kim, Jhoon;Moon, Kyung-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.3
    • /
    • pp.233-240
    • /
    • 2017
  • To distinguish between high particulate matter (HPM) and light Asian dust (LAD) events, aerosol optical properties from GOCI were investigated in Seoul from 2014 to 2016. The poor air quality case caused by fine atmospheric particulate matter (i.e., 80<$PM_{10}$<$400{\mu}g/m^3$) is clearly separated from the case of heavy Asian dust that generally shows the $PM_{10}$ concentration more than $400{\mu}g/m^3$. In this study, we have found eight cases for the poor air quality and divided them into the two events(i.e., HPM and LAD). In case of aerosol optical depth (AOD), there was no big difference between two events. However, Angstrom exponent (AE) for HPM events was greater than 1, while that for LAD events less than 1. As a result of comparing aerosol type, non-absorbing fine mode aerosols were dominant for HPM events, but coarse and absorbing coarse mode aerosols for LAD events. Therefore, AE and aerosol type from GOCI can be used to distinguish between two events effectively.

THE APPLICATION OF THE TOMS AEROSOLS RETRIEVAL ALGORITHM TO GLI MEASUREMENTS

  • Lee Hyun Jin;Kim Jae Hwan;Fukushima Hajime;Ha Kyung-Ja
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.381-384
    • /
    • 2005
  • We have applied the TOMS aerosols retrieval algorithm to GLI measurements. TOMS has utilized the aerosol index, which is a measure of the change in spectral contrast due to the wavelength-dependent effects of aerosols. We have retrieved the GLI aerosol index, which is made by the pair of 380/400nm, 380/412nm, 380/460nm, and 412/460nm. We have found that the biomass burning aerosols represent the absorbing aerosols. In addition, the pair of 380/460nm has shown the best signal for detecting aerosols in Principal Component Analysis(PCA) and comparison of aerosol optical thickness from AERONET data. The theoretical aerosol index is also shown the best signal in the pair of 380/460nm.

  • PDF

Detection of Asian Dust Air-mass based on Short Wavelength Observation of SeaWiFS

  • Fukushima, H.;Hagihara, Y.;Hoshikuma, Y.;Ohta, S.;Uno, I.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1203-1205
    • /
    • 2003
  • To detect dust-loaded air-mass over land and ocean, we propose an index, which is essentially the difference in Rayleigh-corrected reflectance between 412 and 443 nm bands of SeaWiFS. Radiative transfer simulations are conducted to show that the index is linearly related to the optical thickness of modeled dust-contaminated aerosol while showing insensitivity against non-absorbing model aerosols. Asian SeaWiFS data set of 2001 spring is used to produce daily composite imagery of the index, which compares well with TOMS Aerosol Index and with predicted aerosol optical thickness predicted by CFORS chemical weather forecast.

  • PDF

Estimations of the Optical Properties and Direct Radiative Forcing of Aerosol Chemical Components in PM2.5 Measured at Aewol Intensive Air Monitoring Site on Jeju Island (제주 애월 대기오염집중측정소의 PM2.5 에어로졸 화학성분 자료를 이용한 광학특성 및 직접적 복사강제력 추정 연구)

  • Park, Yeon-Hee;Song, Sang-Keun;Kang, Chang-Hee;Song, Jung-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.5
    • /
    • pp.458-472
    • /
    • 2017
  • The optical properties and direct aerosol radiative forcing (DARF) of different aerosol components in $PM_{2.5}$ (water-soluble, insoluble, black carbon (BC), and sea-salt) were estimated using the hourly resolution data measured at Aewol intensive air monitoring site on Jeju Island during 2013, based on a modeling approach. In general, the water-soluble component was predominant over all other components with respect to its impact on the optical properties(except for absorbing BC) and DARF. The annual mean aerosol optical depth (AOD) at 500 nm for the water-soluble component was $0.14{\pm}0.14$ ($0.04{\pm}0.01$ for BC). The total DARF at the surface ($DARF_{SFC}$) and top of the atmosphere ($DARF_{TOA}$), and in the atmosphere ($DARF_{ATM}$) for most aerosol components(except for sea-salt) during the daytime were highest in spring and lowest in fall and/or summer. The maximum $DARF_{SFC}$ of most aerosol components occurred around noon (12:00~14:00 LST) during all seasons, while the maximum $DARF_{TOA}$ occurred in the afternoon (13:00~16:00 LST) during most seasons (except for spring). In addition, the estimated $DARF_{SFC}$ and $DARF_{ATM}$ of the water-soluble component were -20 to $-59W/m^2$ and +3.5 to $+14W/m^2$, respectively, while those of BC were -18 to $-29W/m^2$ and +23 to $+37W/m^2$, respectively.

Comparison of light-absorption properties of aerosols observed in East and South Asia (동아시아와 남아시아지역에서 관측된 에어러솔의 광흡수 특성 비교)

  • Lee, Hae-Jung;Kim, Sang-Woo;Yoon, Soon-Chang;Lee, Sihye;Kim, Ji-Hyoung
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.301-309
    • /
    • 2011
  • In this study, we compared light-absorption properties of aerosols observed in East and South Asia from black carbon (BC) mass concentration, aerosol scattering (${\sigma}_s$) and absorption (${\sigma}_a$) coefficients measurements at four sites: Korea Climate Observatory-Gosan (KCO-G), Korea Climate Observatory-Anmyeon (KCO-A), Maldives Climate Observatory-Hanimaadhoo (MCO-H) and Nepal Climate Observatory-Pyramid (NCO-P). No significant seasonal variations of BC mass concentration, ${\sigma}_s$ and ${\sigma}_a$, despite of wet removal of aerosols by precipitation in summer, were observed in East Asia, whereas dramatic changes of light-absorbing aerosol properties were observed in South Asia between dry and wet monsoon periods. Although BC mass concentration in East Asia is generally higher than that observed in South Asia, BC mass concentration at MCO-H during winter dry monsoon is similar to that of East Asia. The observed solar absorption efficiency (${\alpha}$) at 550 nm, where ${\alpha}={\sigma}_a/({\sigma}_s+{\sigma}_a)$, at KCO-G and KCO-A is higher than that in MCO-H due to large portions of BC emission from fossil fuel combustion. Interestingly, ${\alpha}$ at NCO-P is 0.14, which is two times great than that in MCO-H and is about 40% higher than that in East Asia, though BC mass concentration at NCO-P is the lowest among four sites. Consistently, the highest elemental carbon to sulphate ratio is found at NCO-P.