DOI QR코드

DOI QR Code

Comparison of light-absorption properties of aerosols observed in East and South Asia

동아시아와 남아시아지역에서 관측된 에어러솔의 광흡수 특성 비교

  • Lee, Hae-Jung (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Sang-Woo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Yoon, Soon-Chang (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Sihye (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Ji-Hyoung (School of Earth and Environmental Sciences, Seoul National University)
  • 이혜정 (서울대학교 지구환경과학부) ;
  • 김상우 (서울대학교 지구환경과학부) ;
  • 윤순창 (서울대학교 지구환경과학부) ;
  • 이시혜 (서울대학교 지구환경과학부) ;
  • 김지형 (서울대학교 지구환경과학부)
  • Received : 2011.06.28
  • Accepted : 2011.08.12
  • Published : 2011.09.30

Abstract

In this study, we compared light-absorption properties of aerosols observed in East and South Asia from black carbon (BC) mass concentration, aerosol scattering (${\sigma}_s$) and absorption (${\sigma}_a$) coefficients measurements at four sites: Korea Climate Observatory-Gosan (KCO-G), Korea Climate Observatory-Anmyeon (KCO-A), Maldives Climate Observatory-Hanimaadhoo (MCO-H) and Nepal Climate Observatory-Pyramid (NCO-P). No significant seasonal variations of BC mass concentration, ${\sigma}_s$ and ${\sigma}_a$, despite of wet removal of aerosols by precipitation in summer, were observed in East Asia, whereas dramatic changes of light-absorbing aerosol properties were observed in South Asia between dry and wet monsoon periods. Although BC mass concentration in East Asia is generally higher than that observed in South Asia, BC mass concentration at MCO-H during winter dry monsoon is similar to that of East Asia. The observed solar absorption efficiency (${\alpha}$) at 550 nm, where ${\alpha}={\sigma}_a/({\sigma}_s+{\sigma}_a)$, at KCO-G and KCO-A is higher than that in MCO-H due to large portions of BC emission from fossil fuel combustion. Interestingly, ${\alpha}$ at NCO-P is 0.14, which is two times great than that in MCO-H and is about 40% higher than that in East Asia, though BC mass concentration at NCO-P is the lowest among four sites. Consistently, the highest elemental carbon to sulphate ratio is found at NCO-P.

Keywords

References

  1. Alexander, D.T.L., P.A. Crozier, and J.R. Anderson, 2008: Brown carbon spheres in east Asian outflow and their optical properties. Science, 321, 833-836. https://doi.org/10.1126/science.1155296
  2. Anderson, T.L., D.S. Covert, S.F. Marshall, M.L. Laucks, R.J. Charlson, A.P. Waggoner, J.A. Ogren, R. Caldow, R.L. Holm, F.R. Quant, G.J. Sem, A. Wiedensohler, N.A. Ahlquist, and T.S. Bates, 1996: Performance characteristics of a high-sensitivity, three wavelength, total scatter/backscatter nephelometer. Journal of Atmospheric and Oceanic Technology, 13(5), 967-986. https://doi.org/10.1175/1520-0426(1996)013<0967:PCOAHS>2.0.CO;2
  3. Arnott, W. P., K. Hamasha, H. Moosmuller, P. J. Sheridan, and J. A. Ogren, 2005: Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: evaluation with a photoacoustic instrument and 3- wavelength nephelometer. Aerosol Sci. Tech., 39, 17-29. https://doi.org/10.1080/027868290901972
  4. Bohner, J., 2006: General climatic controls and topoclimatic variations in Central and High Asia. BOREAS, 35, 279-294. https://doi.org/10.1080/03009480500456073
  5. Bonasoni, P., P. Laj, A. Marinoni, M. Sprenger, F. Angelini, J. Arduini, U. Bonaf`e, F. Calzolari, T. Colombo, S. Decesari, C. Di Biagio, A.G. di Sarra, F. Evangelisti, R. Duchi, M.C. Facchini, S. Fuzzi, G.P. Gobbi, M. Maione, A. Panday, F. Roccato, K. Sellegri, H. Venzac, G.P. Verza, P. Villani, E. Vuillermoz, and P. Cristofanelli, 2010: Atmospheric Brown Clouds in the Himalayas: first two years of continuous observations at the Nepal-Climate Observatory at Pyramid (5079 m). Atmos. Chem. Phys., 10, 7515-7531, doi:10.5194/acp-10-7515-2010.
  6. Bond, T.C., D.G. Streets, K.F. Yarber, S.M. Nelson, J.H. Woo, and Z. Klimont, 2004: A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys, Res., 109, D14203, doi:10.1029/2003JD003697.
  7. Bond, T.C., D.G. Streets, K.F. Yarber, S.M. Nelson, J.H. Woo, and Z. Klimont, E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D.G. Streets, and N.M. Trautmann, 2007: Historical emissions of black and organic carbon aerosol from energyrelated combustion, 1850-2000. Global Biogeochem. Cycles, 21, GB2018, doi:10.1029/2006GB002840.
  8. Chakrabarty, R.K., H. Moosmuller, L.-W. A. Chen, K. Lewis, W. P. Arnott, C. Mazzolen, M. Dubey, C. E. Wold, W. M. Hao, and S. M. Kreidenweis, 2010: Brown carbon in tar balls from smoldering biomass combustion. Atmos. Chem. Phys., 10, 6363-6370, doi:10.5194/acp-10-6363-2010.
  9. Corrigan, C.E., V. Ramanathan, and J.J. Schauer, 2006: Impact of monsoon transition on the physical and optical properties of aerosol. J. Gephys. Res., 111, D18208, doi:10.1029/ 2005JD006370.
  10. Decesari, S., M.C. Facchini, C. Carbone, L. Giulianelli, M. Rinaldi, E. Finessi, S. Fuzzi, A. Marinoni, P. Cristofanelli, R. Duchi, P. Bonasoni, E. Vuillermoz, J. Cozic, J.L. Jaffrezo, and P. Laj, 2010: Chemical composition of PM10 and PM1 at the high-altitude Himalayan station Nepal Climate Observatory-Pyramid (NCO-P) (5079ma.s.l.). Atmos. Chem. Phys., 10, 4583-4596. https://doi.org/10.5194/acp-10-4583-2010
  11. Ganguly, D., A. Jayaraman, H. Gadhavi, and T.A. Rajesh, 2005: Features in wavelength dependence of aerosol absorption observed over central India. Geophys. Res. Lett., 32, L13821, doi:10.1029/2005GL023023.
  12. Hansen, A.D.A., H. Rosen, and T. Novakov, 1984: The aethalometer-an instrument for the real-time measurement of optical absorption by aerosol particles. Sci. Total Environ., 36, 191-196. https://doi.org/10.1016/0048-9697(84)90265-1
  13. Hansen, A.D.A., H. Rosen, and T. Novakov, 2003: The Aethalometer. Manual, Magee Scientific, Berkeley, California, USA.
  14. Kim, S.W., S.C. Yoon, J. Kim, and S.Y. Kim, 2007: Seasonal and monthly variations of columnar aerosol optical properties over East Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements. Atmos. Environ., 41, 1634-1651. https://doi.org/10.1016/j.atmosenv.2006.10.044
  15. Kirchstetter, T. W., T. Novakov, and P. V. Hobbs, 2004: Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res., 109, D21208, doi:10.1029/2004JD004999.
  16. Kistler, R. E., H. Moosmuller, L.-W. A. Chen, K. Lewis, W. P. Arnott, C. Mazzolen, M. Dubey, C. E. Wold, W. M. Hao, and S. M. Kreidenweis,, 2001: The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247-268. https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
  17. Krishnan, P., and P.K. Kunhikrishnan, 2004: Temporal variations of ventilation coefficient at a tropical Indian station using UHF wind profiler. Curr. Sci., 86, 447-451.
  18. Lawrence, M.G., and J. Lelieveld, 2010: Atmospheric pollutant outflow from southern Asia: a review. Atmos. Chem. Phys., 10, 11017-11096. https://doi.org/10.5194/acp-10-11017-2010
  19. Marinoni, A., P. Cristofanelli, P. Laj, R. Duchi, F. Calzolari, S. Decesari, K. Sellegri, E. Vuillermoz, G.P. Verza, P. Villani, and P. Bonasoni, 2010: Aerosol mass and black carbon concentrations, two year-round observations at NCO-P (5079 m, Southern Himalayas). Atmos. Chem. Phys., 10, 8551-8562. https://doi.org/10.5194/acp-10-8551-2010
  20. Menon, S., J. Hansen, L. Nazarenko, and Y. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 2250-2253. https://doi.org/10.1126/science.1075159
  21. Petzold, A., H. Kramer, and M. Schonlinner, 2002: Continuous Measurement of Atmospheric Black Carbon Using a Multi-Angle Absorpton Photometer. Environ. Sci. Pollut. Res., 4, 78-82.
  22. Ramana, M.V., V. Ramanathan, Y. Feng, S.C. Yoon, S.W. Kim, G.R. Carmichael, and J.J. Schauer, 2010: Warming influenced by the ratio of black carbon to sulphate and the black-carbon source. Nat. Geosci., 3(8), 542-545. https://doi.org/10.1038/ngeo918
  23. Ramanathan, V., and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nat Geosci, 1, 221-227. https://doi.org/10.1038/ngeo156
  24. Schiemann, R., D. Luthi, and C. Schar, 2009: Seasonality and Interannual Variability of the Westerly Jet in the Tibetan Plateau Region. J. Climate, 22, 2940-2957. https://doi.org/10.1175/2008JCLI2625.1
  25. Sellegri, K., P. Laj, H. Venzac, J. Boulon, D. Picard, P. Villani, P. Bonasoni, A. Marinoni, P. Cristofanelli, and E. Vuillermoz, 2010: Seasonal variations of aerosol size distributions based on long-term measurements at the high altitude Himalayan site of Nepal Climate Observatory- Pyramid (5079 m), Nepal. Atmos. Chem. Phys., 10, 10679-10690. https://doi.org/10.5194/acp-10-10679-2010
  26. Yasunari, T. J., P. Bonasoni, , P. Laj, K. Fujita, E. Vuillermoz, A. Marinoni, P. Cristofanelli, R. Duchi, G. Tartari, and K.-M. Lau, 2010: Estimated impact of black carbon deposition during premonsoon season from Nepal Climate Observatory - Pyramid data and snow albedo changes over Himalayan glaciers. Atmos. Chem. Phys., 10, 6603-6615, doi:10.5194/acp-10-6603-2010.
  27. Zhang, Q., D.G. Streets, G.R. Carmichael, K. He, H. Huo, A. Kannari, Z. Klimont, I. Park, S. Reddy, J.S. Fu, D. Chen, L. Duan, Y. Lei, L. Wang, and Z. Yao, 2009: Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys., 9, 5131-5153.