• 제목/요약/키워드: absorber layer

검색결과 193건 처리시간 0.043초

십자형 광대역 페라이트 전자파흡수체의 설계 (Design of Broad Band Electromagnetic Wave Absorbers with Cross-Shaped Ferrite.)

  • 김동일;전상엽;정세모
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1996년도 The Korean Institute of Navigation 1996년도 한·중 국제학술 심포지움 및 추계학술발표회 논문집
    • /
    • pp.125-134
    • /
    • 1996
  • A design method of double layered electromagnetic wave absorbers with cross-shaped ferrite prominence in the second layer which has broad band frequency characteristics was proposed. The broad band electromagnetic wave absorber can be designed under some approximations by the theoretical model using the equivalent material constants method for the second layer. Based on the developed model broad band electromagnetic wave absorbers with excellent reflectivity frequency characteristics in the frequency range of 30MHz to 3,990MHz were designed.

  • PDF

Hot-air 공정을 이용한 무기 CsPbl2Br 페로브스카이트 태양전진 제작 연구 (Study of Inorganic CsPbI2Br Perovskite Solar Cell Using Hot-air Process)

  • 김리나;이동건;강동원;김은도;김제하
    • Current Photovoltaic Research
    • /
    • 제10권4호
    • /
    • pp.101-106
    • /
    • 2022
  • We prepared a CsPbI2Br solution using Cesium iodide (CsI), Lead (II) bromide (PbBr2) and Lead (II) iodide (PbI2) materials into a polar solvent mixture of N,N-dimethylformamide (DMF) and Dimethyl sulfoxide (DMSO). A simple spin coating technique was used for the fabrication of CsPbI2Br absorber layer in the solution process. In order to prepare uniform coating of absorber film we adopted a hot-air process in assocation with the spin coating. It was confirmed that the thin film manufactured by the hot-air process had a higher absorption rate than that without it, and the optical band gap was measured 1.93 eV. The thin film of absorber was uniformly prepared and revealed the Black α-Cubic crystal phase as proved through X-ray diffraction analysis. Finally, a perovskite solar cell having an n-i-p structure was manufactured with a CsPbI2Br perovskite absorption layer. From the solar cell, we obtained a power conversion efficiency (PCE) of 5.97% in a forward measurement.

Growth and Properties of CrNx/TiNy/Al Based on N2 Gas Flow Rate for Solar Thermal Applications

  • Ju, Sang-Jun;Jang, Gun-Eik;Jang, Yeo-Won;Kim, Hyun-Hoo;Lee, Cheon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권3호
    • /
    • pp.146-149
    • /
    • 2016
  • The CrN/TiN/Al thin films for solar selective absorber were prepared by dc reactive magnetron sputtering with multi targets. The binary nitride CrN layer deposited with change in N2 gas flow rates. The gas mixture of Ar and N2 was an important parameter during sputtering deposition because the metal volume fraction (MVF) was controlled by the N2 gas flow rate. In this study, the crystallinity and surface properties of the CrN/TiN/Al thin films were estimated by X-ray diffraction (XRD), atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The composition and depth profile of thin films were investigated using Auger electron spectroscopy (AES). The absorptance and reflectance with wavelength spectrum were recorded by UV-Vis-NIR spectrophotometry at a range of 300~1,100 nm.

$CuInSe_2$ 나노 입자 합성 및 이를 이용한 광흡수층 박막 제조 (Synthsis of $CuInSe_2$ nanoparticles and its application to the absorber layer for thin films solar cells)

  • 김균환;안세진;윤재호;곽지혜;조아라;김도진;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.396-396
    • /
    • 2009
  • Chalcopyrite semiconductor $CuInSe_2$ nanoparticles were prepared using a low temperature colloidal route by reacting the starting materials (CuI, $InI_3$ and $Na_2Se$) in solvents. After synthesised $CuInSe_2$ nanoparticles precursors were mixed with organic binder for the viscosity of the precursor slurry to be suitable for the doctor blade method. The mixture of $CuInSe_2$ and binder was deposited onto molybdenum-coated sodalime glass substrates to form thin film. The precursor thin films were preheated on the hot plate to remove remaining solvents and binder material. After subsequent thermal processing of the thin film under a selenium ambient, $CuInSe_2$ absorber layer with grain size significantly lager than that of the nanoparticles was formed.

  • PDF

Flower like Buffer Layer to Improve Efficiency of Submicron-Thick CuIn1-xGaxSe2 Solar Cells

  • Park, Nae-Man;Cho, Dae-Hyung;Lee, Kyu-Seok
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1129-1134
    • /
    • 2015
  • In this article, a study of a flower like nanostructured CdS buffer layer for improving the performance of a submicron-thick $CuIn_{1-x}Ga_xSe_2$ (CIGS) solar cell (SC) is presented. Both its synthesis and properties are discussed in detail. The surface reflectance of the device is dramatically decreased. SCs with flower like nanostructured CdS buffer layers enhance short-circuit current density, fill factor, and open-circuit voltage. These enhancements contribute to an increase in power conversion efficiency of about 55% on average compared to SCs that don't have a flower like nanostructured CdS buffer layer, despite them both having the same CIGS light absorbing layer.

Eulerian-Granular method를 사용한 고체 입자 유동 모델 개발 (DEVELOPMENT OF EULERIAN-GRANULAR MODEL FOR NUMERICAL SIMULATION MODEL OF PARTICULATE FLOW)

  • 이태규;신승원
    • 한국전산유체공학회지
    • /
    • 제20권2호
    • /
    • pp.46-51
    • /
    • 2015
  • In this paper, we have developed numerical model for particulated flow through narrow slit using Eulerian-Granular method. Commercial software (FLUENT) was utilized as simulation tool and main focus was to identify the effect from various numerical options for modeling of solid particles as continuos phase in granular flow. Gidaspow model was chosen as basic model for solid viscosity and drag model. And lun-et-al model was used as solid pressure and radial distribution model, respectively. Several other model options in FLUENT were tested considering the cross related effect. Mass flow rate of the particulate through the slit was measured to compare. Due to the high volume density of the stacked particulates above the slit, effect from various numerical options were not significant. The numerical results from basic model were also compared with experimental results and showed very good agreement. The effects from the characteristics of particles such as diameter, angle of internal friction, and collision coefficient were also analyzed for future design of velocity resistance layer in solar thermal absorber. Angle of internal friction was found to be the dominat variable for the particle mass flow rate considerably. More defined 3D model along with energy equation for complete solar thermal absorber design is currently underway.

다양한 두께의 KF로 후증착열처리된 Cu(In,Ga)Se2 광흡수층의 태양전지 성능 변화 (Performance Variation of Cu(In,Ga)Se2 Photovoltaic Absorber Post-deposition Treated with Different KF Thickness)

  • 배진아;송유진;전찬욱
    • Current Photovoltaic Research
    • /
    • 제6권2호
    • /
    • pp.56-61
    • /
    • 2018
  • In this study, CIGS absorber layers were deposited on low-alkali glass and sodalime glass substrates and potasium floride (KF) of various thicknesses was supplied at an elevated temperature after the CIGS growth. The effect of KF post-deposition treatment on the two types of substrates was extremely different. On the low-alkali substrate, the open-circuit voltage (Voc) was improved but the fill-factor (FF) degradation was severe, whereas the sodalime substrate showed Voc deterioration and FF improvement. In the case of supplying 20 nm of KF on both substrates, the efficiency gain of 0.3~1.1%p was obtained. With increasing the KF thickness, a small protrusion-like microstructure developed on the surface of the absorber layer, and the microstructures that were not removed in the subsequent process were found to be the main cause of the FF loss.

극저온에서 증착된 비정질실리콘 산화막 기반의 고성능 박막태양전지 (High Performance Amorphous Silicon Oxide Thin Film Solar Cells Fabricated at Very Low Temperature)

  • 강동원
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1694-1696
    • /
    • 2016
  • Present thin film solar cells with hydrogenated amorphous silicon oxide (a-SiO:H) as an absorber suffer from low fill factor(FF) of 61~64 [%] in spite of its benefits related to high open circuit voltage ($V_{oc}$). Since degraded quality of a-SiO:H absorber by alloying with oxygen can affect the FF, we aimed to achieve high photosensitivity by minimizing $CO_2$ gas addition. Improving optical gap($E_{opt}$) has been attained by strong hydrogen dilution combined with lowering substrate temperature down to 100 [$^{\circ}C$]. Small amount of the $CO_2$ was added in order to disturb microcrystalline formation by high hydrogen dilution. The developed a-SiO:H has high photosensitivity (${\sim}2{\times}10^5$) and high $E_{opt}$ of 1.85 [eV], which contributed to attain remarkable FF of 74 [%] and high $V_{oc}$ (>1 [V]). As a result, high power conversion efficiency of 7.18 [%] was demonstrated by using very thin absorber layer of only 100 [nm], even though we processed all experiment at extremely low temperature of 100 [$^{\circ}C$].