Browse > Article
http://dx.doi.org/10.21218/CPR.2022.10.4.101

Study of Inorganic CsPbI2Br Perovskite Solar Cell Using Hot-air Process  

RINA, KIM (Department of Energy Convergence Engineering, Cheongju University)
Dong-Gun, Lee (Department of Energy System Engineering, Chung-Ang University)
Dong-Won, Kang (Department of Energy System Engineering, Chung-Ang University)
Eundo, Kim (ASTROTEK Co., Ltd.)
Jeha, Kim (Department of Energy Convergence Engineering, Cheongju University)
Publication Information
Current Photovoltaic Research / v.10, no.4, 2022 , pp. 101-106 More about this Journal
Abstract
We prepared a CsPbI2Br solution using Cesium iodide (CsI), Lead (II) bromide (PbBr2) and Lead (II) iodide (PbI2) materials into a polar solvent mixture of N,N-dimethylformamide (DMF) and Dimethyl sulfoxide (DMSO). A simple spin coating technique was used for the fabrication of CsPbI2Br absorber layer in the solution process. In order to prepare uniform coating of absorber film we adopted a hot-air process in assocation with the spin coating. It was confirmed that the thin film manufactured by the hot-air process had a higher absorption rate than that without it, and the optical band gap was measured 1.93 eV. The thin film of absorber was uniformly prepared and revealed the Black α-Cubic crystal phase as proved through X-ray diffraction analysis. Finally, a perovskite solar cell having an n-i-p structure was manufactured with a CsPbI2Br perovskite absorption layer. From the solar cell, we obtained a power conversion efficiency (PCE) of 5.97% in a forward measurement.
Keywords
Perovskite; $CsPbI_2Br$; Spin coating; Hot-air process; Power conversion efficiency (PCE);
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Park, S. J., Ji, S. G., Kim, J. Y., "Inorganic charge transport materials for high reliable perovskite solar cells," Ceramist, 23(2), 145-165 (2020).   DOI
2 Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J., Leijtens, T., Heaz, L. M., Petrozza, A., Snaith, H. J., "Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber," Science, 342(6156), 341-344 (2013).   DOI
3 NREL, "Best Research-Cell Efficiency chart", 2022, https://www.nrel.gov/pv/cell-efficiency.html.
4 Shen, E., Chen, J., Tian, Y., Luo, Y., Shen, Y., Sun, Q., Jin, T., Shi, G., Li, Y., Tang, J., "Interfacial energy level tuning for efficient and thermostable CsPbI2Br perovskite solar cells," Advanced Science, 7(1), 1901952 (2020).
5 Zhao, H., Han, Y., Xu, Z., Duan, C., Yang, S., Yuan, S., Yang, Z., Liu, Z., Liu, S., "A novel anion doping for stable CsPbI2Br perovskite solar cells with an efficiency of 15.56% and an open circuit voltage of 1.30 V," Advanced Energy Materials, 9(40), 1902279 (2019).
6 Yin, G., Zhao, H., Jiang, H., Yuan, S., Niu, T., Zhao, K., Liu, Z., Liu, S., "Precursor engineering for all-inorganic CsPbI2Br perovskite solar cells with 14.78% efficiency," Advanced Functional Materials, 28(39), 1803269 (2018).
7 Farva, U., Kim, J., "Growth temperature-dependent morphological, optical, and electrical study of SnO2 thin film by atomic layer deposition," Materials Chemistry and Physics, 267, 124584 (2021).
8 Shin, S., Ham, G., Jeon, H., Park, J., Jang, W., Jeon, H., "Atomic Layer Deposition: Overview and Applications," Korean Journal of Materials Research, 23(8), 405-422 (2013).
9 Mali, S. S., Patil, J. V., Shinde, P. S., de Miguel, G., Hong, C. K., "Fully air-processed dynamic hot-air-assisted M: CsPbI2Br (M: Eu2, In3) for stable inorganic perovskite solar cells," Matter, 4(2), 635-653 (2021).   DOI
10 Mali, S. S., Patil, J. V., Hong, C. K., "Making air-stable all-inorganic perovskite solar cells through dynamic hot-air," Nano Today, 33, 100880 (2020).
11 Ouafi, M., Atourki, L., Laanab, L., Vega, E., Mari, B., Mollar, M., Jaber, B., "Hot airflow deposition: Toward high quality MAPbI3 perovskite films," Journal of Alloys and Compounds, 790, 1101-1107 (2019).   DOI
12 Farva, U., Lee, H. W., Kim, R. -N., Lee, D. -G., Kang, D. -W., Kim, J., "Growth temperature influence on atomic-layer-deposited In2O3 thin films and their application in inorganic perovskite solar cells," Nanomaterials, 11(8), 2047 (2021).
13 이정구, 강동원, "페로브스카이트 태양전지의 기술현황 및 시장동향"(한국과학기술정보연구원, 2016).
14 Lee, S., Kim, H., "원자층 증착법(ALD)을 이용한 SiC MOS 게이트 산화막의 형성," Electrical & Electronic Materials, 30(9), 36-45 (2017).
15 Fan, Y., Fang, J., Chang, X., Tang, M., Barrit, D., Xu, Z., Jiang, Z., Wen, J., Zhao, H., Niu, T., Smilgies, D., Jin, S., Liu, Z., Li, E. Q., Amassian, A., Liu, S., Zhao, K.,"Scalable ambient fabrication of high-performance CsPbI2Br solar cells," Joule, 3(10), 2485-2502 (2019).   DOI
16 Thirumoorthi, M., Thomas Joseph Prakash, J, "Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique," Journal of Asian Ceramic Societies, 4(1), 124-132 (2016).   DOI
17 Assi, A.A., Saleh, W.R., Mohajerani, E., "Effect of metals (au, ag, and ni) as cathode electrode on perovskite solar cells," IOP Conference Series: Earth and Environmental Science, 722(1), 012019 (2020).
18 R. Singh, M. Parashar, "Origin of Hysteresis in Perovskite Solar Cells," in Soft-Matter Thin Film Solar Cells: Physical Processes and Device Simulation, (AIP Publishing (online), Melville, New York, 2020), pp. 1-1-1-42.
19 Kam, M., Zhang, Q., Zhang, D., Fan, Z., "Room-temperature sputtered SnO2 as robust electron transport layer for air-stable and efficient perovskite solar cells on rigid and flexible substrates," Scientific Report, 9(1), 1-10 (2019).   DOI
20 Elumalai, N. K., Uddin, A., "Hysteresis in organic-inorganic hybrid perovskite solar cells," Solar Energy Mater Solar Cells, 157, 476-509 (2016).   DOI
21 Kari, M., Saghafi, K., "Current-voltage hysteresis reduction of CH3NH3PbI3 planar perovskite solar cell by multi-layer absorber," Micro and Nanostructures, 165, 207207 (2022).
22 Wu, F., Pathak, R., Qiao, Q., "Origin and alleviation of JV hysteresis in perovskite solar cells: A short review," Catalysis Today, 374, 86-101 (2021).