DOI QR코드

DOI QR Code

Hot-air 공정을 이용한 무기 CsPbl2Br 페로브스카이트 태양전진 제작 연구

Study of Inorganic CsPbI2Br Perovskite Solar Cell Using Hot-air Process

  • 김리나 (에너지융합학과, 청주대학교) ;
  • 이동건 (에너지시스템공학부, 중앙대학교) ;
  • 강동원 (에너지시스템공학부, 중앙대학교) ;
  • 김은도 ((주)아스트로텍) ;
  • 김제하 (에너지융합학과, 청주대학교)
  • RINA, KIM (Department of Energy Convergence Engineering, Cheongju University) ;
  • Dong-Gun, Lee (Department of Energy System Engineering, Chung-Ang University) ;
  • Dong-Won, Kang (Department of Energy System Engineering, Chung-Ang University) ;
  • Eundo, Kim (ASTROTEK Co., Ltd.) ;
  • Jeha, Kim (Department of Energy Convergence Engineering, Cheongju University)
  • 투고 : 2022.10.24
  • 심사 : 2022.11.30
  • 발행 : 2022.12.31

초록

We prepared a CsPbI2Br solution using Cesium iodide (CsI), Lead (II) bromide (PbBr2) and Lead (II) iodide (PbI2) materials into a polar solvent mixture of N,N-dimethylformamide (DMF) and Dimethyl sulfoxide (DMSO). A simple spin coating technique was used for the fabrication of CsPbI2Br absorber layer in the solution process. In order to prepare uniform coating of absorber film we adopted a hot-air process in assocation with the spin coating. It was confirmed that the thin film manufactured by the hot-air process had a higher absorption rate than that without it, and the optical band gap was measured 1.93 eV. The thin film of absorber was uniformly prepared and revealed the Black α-Cubic crystal phase as proved through X-ray diffraction analysis. Finally, a perovskite solar cell having an n-i-p structure was manufactured with a CsPbI2Br perovskite absorption layer. From the solar cell, we obtained a power conversion efficiency (PCE) of 5.97% in a forward measurement.

키워드

과제정보

이 논문은 2022년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원(No. 20224000000070, 스마트 에너지신산업 클러스터 인재양성)과 2022년 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0011933, 2022년 산학융합지구조성사업). 이 논문은 2021~2022년도 청주대학교 연구장학 지원에 의한 것임.

참고문헌

  1. Park, S. J., Ji, S. G., Kim, J. Y., "Inorganic charge transport materials for high reliable perovskite solar cells," Ceramist, 23(2), 145-165 (2020). https://doi.org/10.31613/ceramist.2020.23.2.04
  2. Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J., Leijtens, T., Heaz, L. M., Petrozza, A., Snaith, H. J., "Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber," Science, 342(6156), 341-344 (2013). https://doi.org/10.1126/science.1243982
  3. NREL, "Best Research-Cell Efficiency chart", 2022, https://www.nrel.gov/pv/cell-efficiency.html.
  4. Shen, E., Chen, J., Tian, Y., Luo, Y., Shen, Y., Sun, Q., Jin, T., Shi, G., Li, Y., Tang, J., "Interfacial energy level tuning for efficient and thermostable CsPbI2Br perovskite solar cells," Advanced Science, 7(1), 1901952 (2020).
  5. Zhao, H., Han, Y., Xu, Z., Duan, C., Yang, S., Yuan, S., Yang, Z., Liu, Z., Liu, S., "A novel anion doping for stable CsPbI2Br perovskite solar cells with an efficiency of 15.56% and an open circuit voltage of 1.30 V," Advanced Energy Materials, 9(40), 1902279 (2019).
  6. Yin, G., Zhao, H., Jiang, H., Yuan, S., Niu, T., Zhao, K., Liu, Z., Liu, S., "Precursor engineering for all-inorganic CsPbI2Br perovskite solar cells with 14.78% efficiency," Advanced Functional Materials, 28(39), 1803269 (2018).
  7. Farva, U., Kim, J., "Growth temperature-dependent morphological, optical, and electrical study of SnO2 thin film by atomic layer deposition," Materials Chemistry and Physics, 267, 124584 (2021).
  8. Shin, S., Ham, G., Jeon, H., Park, J., Jang, W., Jeon, H., "Atomic Layer Deposition: Overview and Applications," Korean Journal of Materials Research, 23(8), 405-422 (2013).
  9. Mali, S. S., Patil, J. V., Shinde, P. S., de Miguel, G., Hong, C. K., "Fully air-processed dynamic hot-air-assisted M: CsPbI2Br (M: Eu2, In3) for stable inorganic perovskite solar cells," Matter, 4(2), 635-653 (2021). https://doi.org/10.1016/j.matt.2020.11.008
  10. Mali, S. S., Patil, J. V., Hong, C. K., "Making air-stable all-inorganic perovskite solar cells through dynamic hot-air," Nano Today, 33, 100880 (2020).
  11. Ouafi, M., Atourki, L., Laanab, L., Vega, E., Mari, B., Mollar, M., Jaber, B., "Hot airflow deposition: Toward high quality MAPbI3 perovskite films," Journal of Alloys and Compounds, 790, 1101-1107 (2019). https://doi.org/10.1016/j.jallcom.2019.03.187
  12. Farva, U., Lee, H. W., Kim, R. -N., Lee, D. -G., Kang, D. -W., Kim, J., "Growth temperature influence on atomic-layer-deposited In2O3 thin films and their application in inorganic perovskite solar cells," Nanomaterials, 11(8), 2047 (2021).
  13. 이정구, 강동원, "페로브스카이트 태양전지의 기술현황 및 시장동향"(한국과학기술정보연구원, 2016).
  14. Lee, S., Kim, H., "원자층 증착법(ALD)을 이용한 SiC MOS 게이트 산화막의 형성," Electrical & Electronic Materials, 30(9), 36-45 (2017).
  15. Fan, Y., Fang, J., Chang, X., Tang, M., Barrit, D., Xu, Z., Jiang, Z., Wen, J., Zhao, H., Niu, T., Smilgies, D., Jin, S., Liu, Z., Li, E. Q., Amassian, A., Liu, S., Zhao, K.,"Scalable ambient fabrication of high-performance CsPbI2Br solar cells," Joule, 3(10), 2485-2502 (2019). https://doi.org/10.1016/j.joule.2019.07.015
  16. Thirumoorthi, M., Thomas Joseph Prakash, J, "Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique," Journal of Asian Ceramic Societies, 4(1), 124-132 (2016). https://doi.org/10.1016/j.jascer.2016.01.001
  17. Assi, A.A., Saleh, W.R., Mohajerani, E., "Effect of metals (au, ag, and ni) as cathode electrode on perovskite solar cells," IOP Conference Series: Earth and Environmental Science, 722(1), 012019 (2020).
  18. R. Singh, M. Parashar, "Origin of Hysteresis in Perovskite Solar Cells," in Soft-Matter Thin Film Solar Cells: Physical Processes and Device Simulation, (AIP Publishing (online), Melville, New York, 2020), pp. 1-1-1-42.
  19. Elumalai, N. K., Uddin, A., "Hysteresis in organic-inorganic hybrid perovskite solar cells," Solar Energy Mater Solar Cells, 157, 476-509 (2016). https://doi.org/10.1016/j.solmat.2016.06.025
  20. Kam, M., Zhang, Q., Zhang, D., Fan, Z., "Room-temperature sputtered SnO2 as robust electron transport layer for air-stable and efficient perovskite solar cells on rigid and flexible substrates," Scientific Report, 9(1), 1-10 (2019). https://doi.org/10.1038/s41598-018-37186-2
  21. Kari, M., Saghafi, K., "Current-voltage hysteresis reduction of CH3NH3PbI3 planar perovskite solar cell by multi-layer absorber," Micro and Nanostructures, 165, 207207 (2022).
  22. Wu, F., Pathak, R., Qiao, Q., "Origin and alleviation of JV hysteresis in perovskite solar cells: A short review," Catalysis Today, 374, 86-101 (2021).