• Title/Summary/Keyword: absolute positioning

Search Result 119, Processing Time 0.024 seconds

The Proprioceptive Function of Rotator Cuff Tear Patients: Preliminary Report of Pre-operative Function (회전근개 파열 환자의 고유 수용성 감각 기능: 수술전 기능의 예비 보고)

  • Lee, Hyunil;Heo, Jaewon;Yoo, Jae Chul
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • Purpose: Proprioceptive function has been known to be important to shoulder stability. However, the function in rotator cuff tear patients is rarely investigated. The purpose of current study is to report the proprioceptive function in rotator cuff tear patients and to analyze the proprioceptive function regarding the tear size and the presence of subscapularis tear. Materials and Methods: Between 2011 and 2012, total 76 patients (male 28 and female 48) were recruited and average age was 61.7 years old (range, 38~76). Preoperatively, joint position senses in internal and external rotation were measured for proprioceptive function testing by method of active re-positioning technique. The absolute difference from set point was measured. Proprioceptive function was further analyzed according to tear size of rotator cuff, the presence of subscapularis tear, visual analogue scale of pain, shoulder functional score (American society of elbow and shoulder score), and ranges of motion in shoulder. Results: The absolute difference for external rotation was $4.9^{\circ}{\pm}2.9^{\circ}$, in normal joint and $4.9^{\circ}{\pm}3.0^{\circ}$for involved joint in rotator cuff tear patients. This difference was not significant statistically (p=0.87). The absolute difference for internal rotation was $4.0^{\circ}{\pm}2.7^{\circ}$in normal joint whereas $4.8^{\circ}{\pm}3.7^{\circ}$ for involved joint showing statistically significant difference (p=0.043). There was some trend that the proprioceptive function of internal rotation was more impaired in the bigger tear size group (more than medium tear) compared to the smaller tear size group (partial thickness and small tear, 5.0 vs. 4.0, p=0.061). The impairment of internal rotation proprioception was also accentuated in patients with subscapularis tear (4.8 vs. 4.0, p=0.065). The proprioceptive function of internal rotation was decreased when the pain visual analogue scale was increased (5.2 vs. 4.0 p=0.04), shoulder functional score was decreased (6.1 vs. 4.2, p=0.005), or range of motion in shoulder joint was restricted (5.3 vs. 3.7, p=0.041). Conclusion: The deficit of proprioceptive function was observed in rotator cuff tear patients. Proprioception for internal rotation was impaired in patients with the bigger tear size and subscapularis tear. Pain, shoulder function score, and range of motion were also shown to be related with the deficit in proprioceptive function.

  • PDF

Inland ASF Measurement by Signal of the 9930M Station (9930M국 로란-C 신호를 이용한 내륙 ASF 측정 연구)

  • Yang, Sung-Hoon;Lee, Chang-Bok;Lee, Jong-Koo;Kim, Young-Jae;Lee, Sang-Jeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.8
    • /
    • pp.603-607
    • /
    • 2010
  • The LORAN system had been used widely and it was an essential navigation aid for ships in the ocean until the GPS is adopted actively. In particular, it was essential functionality for the ships to sail the oceans. According to the advancement of industry, however, the current accuracy of traditional Loran is insufficient for the utilization of harbour approach, land navigation, and the field of survey and timing. Therefore it is necessary that the study on the improvement of the positioning accuracy of Loran. The one of the improving methods is to measure and compensate the propagation time delay between the transmitter and user's receiver, which is called as additional secondary factor (ASF). In this study, we measured the ASF between the Pohang master transmitting station (9930M) and four points where locate within 33 km apart from the transmitting station, using the measuring technique of the absolute time delay without a time of coincidence (TOC) table. As the result of measurement, the ranging error caused by the propagation delay was about 210 m at 33 km, however it can be reduced up to 40 m with ASF compensation.

Generation of Ionospheric Delay in Time Comparison for a Specific GEO Satellite by Using Bernese Software

  • Jeong, Kwang Seob;Lee, Young Kyu;Yang, Sung Hoon;Hwang, Sang-wook;Kim, Sanhae;Song, Kyu-Ha;Lee, Wonjin;Ko, Jae Heon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.125-133
    • /
    • 2017
  • Time comparison is necessary for the verification and synchronization of the clock. Two-way satellite time and frequency (TWSTFT) is a method for time comparison over long distances. This method includes errors such as atmospheric effects, satellite motion, and environmental conditions. Ionospheric delay is one of the significant time comparison error in case of the carrier-phase TWSTFT (TWCP). Global Ionosphere Map (GIM) from Center for Orbit Determination in Europe (CODE) is used to compare with Bernese. Thin shell model of the ionosphere is used for the calculation of the Ionosphere Pierce Point (IPP) between stations and a GEO satellite. Korea Research Institute of Standards and Science (KRISS) and Koganei (KGNI) stations are used, and the analysis is conducted at 29 January 2017. Vertical Total Electron Content (VTEC) which is generated by Bernese at the latitude and longitude of the receiver by processing a Receiver Independent Exchange (RINEX) observation file that is generated from the receiver has demonstrated adequacy by showing similar variation trends with the CODE GIM. Bernese also has showed the capability to produce high resolution IONosphere map EXchange (IONEX) data compared to the CODE GIM. At each station IPP, VTEC difference in two stations showed absolute maximum 3.3 and 2.3 Total Electron Content Unit (TECU) in Bernese and GIM, respectively. The ionospheric delay of the TWCP has showed maximum 5.69 and 2.54 ps from Bernese and CODE GIM, respectively. Bernese could correct up to 6.29 ps in ionospheric delay rather than using CODE GIM. The peak-to-peak value of the ionospheric delay for TWCP in Bernese is about 10 ps, and this has to be eliminated to get high precision TWCP results. The $10^{-16}$ level uncertainty of atomic clock corresponds to 10 ps for 1 day averaging time, so time synchronization performance needs less than 10 ps. Current time synchronization of a satellite and ground station is about 2 ns level, but the smaller required performance, like less than 1 ns, the better. In this perspective, since the ionospheric delay could exceed over 100 ps in a long baseline different from this short baseline case, the elimination of the ionospheric delay is thought to be important for more high precision time synchronization of a satellite and ground station. This paper showed detailed method how to eliminate ionospheric delay for TWCP, and a specific case is applied by using this technique. Anyone could apply this method to establish high precision TWCP capability, and it is possible to use other software such as GIPSYOASIS and GPSTk. This TWCP could be applied in the high precision atomic clocks and used in the ground stations of the future domestic satellite navigation system.

An Analysis of the Port Competition Structure: Focusing on Import and Export Items of Ports in Western Coast Region (항만의 경쟁구조 분석에 관한 연구: 서해안권 항만 수출입품목을 중심으로)

  • Lee, Jin-Kyu;Yeo, Gi-Tae
    • Journal of Korea Port Economic Association
    • /
    • v.31 no.4
    • /
    • pp.75-89
    • /
    • 2015
  • This study examines 31 import and export cargo items handled in each port to investigate which items face the most competition among the ports and how many of them are transited to other ports. The study aims to suggest implications for the future port policy of Incheon Port. It was found that the volume concentration in the Western Coast region from 2005 to 2014 became increasingly decentralized. The decentralization began in earnest in 2009 in particular, and the value was 0.448 in 2014, indicating fierce competition among the regions. According to the static and dynamic positioning analyses results for Incheon Port, Pyeongtaek and Dangjin Port, and Gunsan Port, using BCG Matrix, the static positioning analysis showed that Incheon Port belongs to the 3rd quadrant (Cash Cows), Pyeongtaek and Dangjin Port belongs to the 2nd quadrant (Question Marks), and Gunsan Port belongs to the (Dogs) group. This implies that Incheon Port has maintained its position with large shares compared to those of other ports, despite its low growth rate. However, the market position and growth rate of Incheon Port decreased according to the dynamic positioning analysis results. The shift-share analysis results indicated that the volumes of Incheon Port and Gunsan Port were shifting to Pyeongtaek and Dangjin Port. Moreover, the ratio of absolute growth to potential growth of Incheon Port and Gunsan Port turned out to be significantly lower than that of Pyeongtaek and Dangjin Port, implying that Incheon Port and Gunsan Port are declining as compared to Pyeongtaek Port and Dangjin Port. According to the LQ index analysis results, specialized items from Incheon Port that do not overlap with other ports included the following ten items: meat, fish and crustaceans, bituminous coals, crude oil and petroleum, petroleum-refined products, plastic rubber and products, textiles, nonferrous metal and products, electric machinery, and aircrafts and ships. In particular, it was confirmed that the bulk cargo of Incheon Port was actually shifting to Pyeongtaek and Dangjin Port following the policy of re-establishing port functions.

A Study on the Recognizing Range Expansion Techniques of the Ultrasonic Location Awareness System for the Ubiquitous Computing (유비쿼터스 컴퓨팅을 위한 초음파 위치인식 시스템의 인식영역 확장 기법에 관한 연구)

  • Park Jong-Jin;Lee Dong-Hwal;Kim Su-Yong;Mun Young-Song
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7B
    • /
    • pp.595-601
    • /
    • 2006
  • This study presents an ultrasonic location awareness system for the ubiquitous computing with absolute position. The flight time of ultrasonic waves is determined by a period detecting technique which is able to extend the sensing range compared with traditional methods. For location awareness, ultrasonic waves are sent successively from each ultrasonic transmitter and synchronized by radio frequency (RF) signal, where the transmitting part is fixed and the receiving part is movable. To expand the recognizing range, cell matching technique and coded ultrasonic technique are introduced. The experimentation for various distances is accomplished to verify the used period detecting technique of U-SAT system. The positioning accuracy by using cell matching is also verified by finding the locations of settled points and the usability of coded ultrasonic technique is verified. As a result, the possibility of ultrasonic location awareness system for the ubiquitous computing can be discussed as a pseudo-satellite system with low cost, a high update rate, and relatively high precision, in the places where GPS is not available.

UHF Sensor Development for Partial Discharge Exclusively for Measurement in 25.8kV GIS (25.8kV GIS 부분방전 측정전용 UHF센서 개발)

  • Choi, Mun-Gyu;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1083-1088
    • /
    • 2016
  • 25.8kV GIS part generated by sensors to measure contact an inflow of noise depending on the extent of the measured discharge occurs often not easy. Partial discharge signal measurement sensor suitable for developing a more useful measurements at the scene to this, partial discharge waveform analysis developed a sensor, and to utilize forSensor on the development of the most important is VSWR decided to (voltage standing wave ratio) voltage standing-wave ratio less than 1.5 and decided less than at the full spectrum bands that are measured, this time Return loss, as measured value by absolute criteria 14.0 dB produced the sensor, designed to or more. UHF 1.5~0.5 GHz bandwidth spectrum to be measured in GIS. UHF bands were designed to be able to measure the best signal. Recently, 25.8kV GIS production company has been increasing variety of GIS were made open spacer in partial discharge in accordance with the not very easy to detect the signal. The sensor is designed height of four cm external spacer is attachment GIS in an influx of outside noise measurement, and be so manufactured as to facilitate the least we've done. Also, since partial discharge which occur can measure the frequency of the 170kV GIS external partial-discharge signals that occur at the scene of insulation applied to the spacer. Features, and also derived good results using global positioning. Also measured discharge point about sensors that are stable and the reliability of the development and local substation equipment failure occurring signal analysis through the discharge for the prevention of widely. There should be to believe that used.

A Study on the Computation of Deflection of the Vertical Referred to World Geodetic System by Astrogeodetic Data (세계측지계상에서 천문측량데이터를 이용한 연직선편차 계산에 관한 연구)

  • Lee, Suk-Bae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.1 s.39
    • /
    • pp.47-53
    • /
    • 2007
  • Astronomic surveying has been regarded as an important method for absolute positioning of geodetic datum in each countries under the local geodetic reference system. The purposes of this study are to determine astrogeodetic geoidal heights referred to Bessel ellipsoid and to determine deflection of the vertical and geoidal heights referred to GRS80 of World Geodetic System by astronomic surveying data which have been surveyed after 1970 in Korea. The results show that $\xi$ component of the deflection of the vertical distribute from -5.725" to 8.005" and $\eta$ component distribute from -14.917" to 6.2" and astrogeodrtic geoidal heights distribute from 23 m to 27 m in the study area. Also, we could see that GRS80 was more optimal ellipsoid than Bessel 1841 ellipsoid to Korea through comparing both astrogeotic geoidal heights referred to GRS80 and Bessel 1841 ellipsoid.

  • PDF

A Study to Expand the Linear Range of the Mandibular Kinesiograph (Mandibular Kinesiograph에서의 선형범위 확장에 관한 연구)

  • Kim, In-Kwon
    • The Journal of the Korean dental association
    • /
    • v.22 no.7 s.182
    • /
    • pp.621-633
    • /
    • 1984
  • The possibility of expanding the linear range of the Kinesiograph was studied using a nonferromagnetic mechanical positioning device. The magnet was moved in linear steps of 5 mm through three planes parallel to the frame work carrying the sensors within working range of a 3 cm wide by 4 cm deep by 5 cm high three dimensional lattice and a matrix of 693 data points was achieved. For each data point, the three Kinesiograph outputs were associated with the values of actual position. Once three coordinates of observed values were known, actual values could be determined. A computer program was specially written in Fortran to deal with this work. Because each dat point was 5 mm apart from each other, there would be 480 cubes with 8 data points Further refinement of the system is possible using a smaller interval between each data point. In conclusion, a theoretical model was presented which, by means of computer support, would allow the absolute measurement of jaw position over the entire range of functional jaw movements.

  • PDF

The Influence of After-Sales Service Quality on Customer Satisfaction and Loyalty in Mobile Phone (휴대폰 애프터서비스 품질이 고객만족과 고객충성도에 미치는 영향)

  • Lee, Jae jun;Ryu, Ji-Hyun;Lee, Sae-Jae;Oh, Hyun-Seung;Cho, Jin-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.87-95
    • /
    • 2017
  • This study aims to configure what dimensions make up for smart phone after service quality, and how this service quality affects customer satisfaction and customer loyalty. Smart phone market is a market of the device leading the digital convergence as well as positioning itself as one of the national growth driving industry. To survive in this matured market, companies should have to respond actively to radical changes and customers needs in the so-called Smart Revolution environment. Lately, however, the smart phone market is prospected to move from growth phase to mature phase by the scholars. In order to proactively respond to the change in such market condition, companies need to provide absolute advantage in customer loyalty over their competitors by revolutionizing the after-sales service quality. Qualified A/S will lead to service satisfaction and achieve customer loyalty. The empirical analysis results obtained through A/S quality are as follows : First, human quality (attitude, expertise, problem-solvability), environment quality (handling agility, convenience, comfort), service policy quality (quality guarantee, additional service operation) are dimensions that make up for A/S quality. Second, A/S quality dimension showed a significant positive influence on service satisfaction and A/S satisfaction showed a positive influence on customer loyalty as well. Based on this empirical study, we propose some implications for A/S quality improvement. First, human quality dimension has relatively higher influence on A/S satisfaction in case of free A/S, so companies need to solve the product problem completely when consumer's first visit by continual employee education. Second, in case of paid A/S, the service policy quality-especially A/S Warranty period- has higher influence on A/S satisfaction.

Accuracy Comparison of Spatiotemporal Gait Variables Measured by the Microsoft Kinect 2 Sensor Directed Toward and Oblique to the Movement Direction (정면과 측면에 위치시킨 마이크로 소프트 키넥트 2로 측정한 보행 시공간 변인 정확성 비교)

  • Hwang, Jisun;Kim, Eun-jin;Hwang, Seonhong
    • Physical Therapy Korea
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Background: The Microsoft Kinect which is a low-cost gaming device has been studied as a promise clinical gait analysis tool having satisfactory reliability and validity. However, its accuracy is only guaranteed when it is properly positioned in front of a subject. Objects: The purpose of this study was to identify the error when the Kinect was positioned at a $45^{\circ}$ angle to the longitudinal walking plane compare with those when the Kinect was positioned in front of a subject. Methods: Sixteen healthy adults performed two testing sessions consisting of walking toward and $45^{\circ}$ obliquely the Kinect. Spatiotemporal outcome measures related to stride length, stride time, step length, step time and walking speed were examined. To assess the error between Kinect and 3D motion analysis systems, mean absolute errors (MAE) were determined and compared. Results: MAE of stride length, stride time, step time and walking speed when the Kinect set in front of subjects were investigated as .36, .04, .20 and .32 respectively. MAE of those when the Kinect placed obliquely were investigated as .67, .09, .37, and .58 respectively. There were significant differences in spatiotemporal outcomes between the two conditions. Conclusion: Based on our study experience, positioning the Kinect directly in front of the person walking towards it provides the optimal spatiotemporal data. Therefore, we concluded that the Kinect should be placed carefully and adequately in clinical settings.