• Title/Summary/Keyword: absolute model accuracy

Search Result 252, Processing Time 0.025 seconds

Validation of Surface Reflectance Product of KOMPSAT-3A Image Data: Application of RadCalNet Baotou (BTCN) Data (다목적실용위성 3A 영상 자료의 지표 반사도 성과 검증: RadCalNet Baotou(BTCN) 자료 적용 사례)

  • Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1509-1521
    • /
    • 2020
  • Experiments for validation of surface reflectance produced by Korea Multi-Purpose Satellite (KOMPSAT-3A) were conducted using Chinese Baotou (BTCN) data among four sites of the Radical Calibration Network (RadCalNet), a portal that provides spectrophotometric reflectance measurements. The atmosphere reflectance and surface reflectance products were generated using an extension program of an open-source Orfeo ToolBox (OTB), which was redesigned and implemented to extract those reflectance products in batches. Three image data sets of 2016, 2017, and 2018 were taken into account of the two sensor model variability, ver. 1.4 released in 2017 and ver. 1.5 in 2019, such as gain and offset applied to the absolute atmospheric correction. The results of applying these sensor model variables showed that the reflectance products by ver. 1.4 were relatively well-matched with RadCalNet BTCN data, compared to ones by ver. 1.5. On the other hand, the reflectance products obtained from the Landsat-8 by the USGS LaSRC algorithm and Sentinel-2B images using the SNAP Sen2Cor program were used to quantitatively verify the differences in those of KOMPSAT-3A. Based on the RadCalNet BTCN data, the differences between the surface reflectance of KOMPSAT-3A image were shown to be highly consistent with B band as -0.031 to 0.034, G band as -0.001 to 0.055, R band as -0.072 to 0.037, and NIR band as -0.060 to 0.022. The surface reflectance of KOMPSAT-3A also indicated the accuracy level for further applications, compared to those of Landsat-8 and Sentinel-2B images. The results of this study are meaningful in confirming the applicability of Analysis Ready Data (ARD) to the surface reflectance on high-resolution satellites.

Recommender system using BERT sentiment analysis (BERT 기반 감성분석을 이용한 추천시스템)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.1-15
    • /
    • 2021
  • If it is difficult for us to make decisions, we ask for advice from friends or people around us. When we decide to buy products online, we read anonymous reviews and buy them. With the advent of the Data-driven era, IT technology's development is spilling out many data from individuals to objects. Companies or individuals have accumulated, processed, and analyzed such a large amount of data that they can now make decisions or execute directly using data that used to depend on experts. Nowadays, the recommender system plays a vital role in determining the user's preferences to purchase goods and uses a recommender system to induce clicks on web services (Facebook, Amazon, Netflix, Youtube). For example, Youtube's recommender system, which is used by 1 billion people worldwide every month, includes videos that users like, "like" and videos they watched. Recommended system research is deeply linked to practical business. Therefore, many researchers are interested in building better solutions. Recommender systems use the information obtained from their users to generate recommendations because the development of the provided recommender systems requires information on items that are likely to be preferred by the user. We began to trust patterns and rules derived from data rather than empirical intuition through the recommender systems. The capacity and development of data have led machine learning to develop deep learning. However, such recommender systems are not all solutions. Proceeding with the recommender systems, there should be no scarcity in all data and a sufficient amount. Also, it requires detailed information about the individual. The recommender systems work correctly when these conditions operate. The recommender systems become a complex problem for both consumers and sellers when the interaction log is insufficient. Because the seller's perspective needs to make recommendations at a personal level to the consumer and receive appropriate recommendations with reliable data from the consumer's perspective. In this paper, to improve the accuracy problem for "appropriate recommendation" to consumers, the recommender systems are proposed in combination with context-based deep learning. This research is to combine user-based data to create hybrid Recommender Systems. The hybrid approach developed is not a collaborative type of Recommender Systems, but a collaborative extension that integrates user data with deep learning. Customer review data were used for the data set. Consumers buy products in online shopping malls and then evaluate product reviews. Rating reviews are based on reviews from buyers who have already purchased, giving users confidence before purchasing the product. However, the recommendation system mainly uses scores or ratings rather than reviews to suggest items purchased by many users. In fact, consumer reviews include product opinions and user sentiment that will be spent on evaluation. By incorporating these parts into the study, this paper aims to improve the recommendation system. This study is an algorithm used when individuals have difficulty in selecting an item. Consumer reviews and record patterns made it possible to rely on recommendations appropriately. The algorithm implements a recommendation system through collaborative filtering. This study's predictive accuracy is measured by Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Netflix is strategically using the referral system in its programs through competitions that reduce RMSE every year, making fair use of predictive accuracy. Research on hybrid recommender systems combining the NLP approach for personalization recommender systems, deep learning base, etc. has been increasing. Among NLP studies, sentiment analysis began to take shape in the mid-2000s as user review data increased. Sentiment analysis is a text classification task based on machine learning. The machine learning-based sentiment analysis has a disadvantage in that it is difficult to identify the review's information expression because it is challenging to consider the text's characteristics. In this study, we propose a deep learning recommender system that utilizes BERT's sentiment analysis by minimizing the disadvantages of machine learning. This study offers a deep learning recommender system that uses BERT's sentiment analysis by reducing the disadvantages of machine learning. The comparison model was performed through a recommender system based on Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units). As a result of the experiment, the recommender system based on BERT was the best.

Validation of Surface Reflectance Product of KOMPSAT-3A Image Data Using RadCalNet Data (RadCalNet 자료를 이용한 다목적실용위성 3A 영상 자료의 지표 반사도 성과 검증)

  • Lee, Kiwon;Kim, Kwangseob
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.167-178
    • /
    • 2020
  • KOMPSAT-3A images have been used in various kinds of applications, since its launch in 2015. However, there were limits to scientific analysis and application extensions of these data, such as vegetation index estimation, because no tool was developed to obtain the surface reflectance required for analysis of the actual land environment. The surface reflectance is a product of performing an absolute atmospheric correction or calibration. The objective of this study is to quantitatively verify the accuracy of top-of-atmosphere reflectance and surface reflectance of KOMPSAT-3A images produced from the OTB open-source extension program, performing the cross-validation with those provided by a site measurement data of RadCalNet, an international Calibration/Validation (Cal/Val) portal. Besides, surface reflectance was obtained from Landsat-8 OLI images in the same site and applied together to the cross-validation process. According to the experiment, it is proven that the top-of-atmosphere reflectance of KOMPSAT-3A images differs by up to ± 0.02 in the range of 0.00 to 1.00 compared to the mean value of the RadCalNet data corresponding to the same spectral band. Surface reflectance in KOMPSAT-3A images also showed a high degree of consistency with RadCalNet data representing the difference of 0.02 to 0.04. These results are expected to be applicable to generate the value-added products of KOMPSAT-3A images as analysisready data (ARD). The tools applied in thisstudy and the research scheme can be extended as the new implementation of each sensor model to new types of multispectral images of compact advanced satellites (CAS) for land, agriculture, and forestry and the verification method, respectively.

Acceptance Testing and Commissioning of Robotic Intensity-Modulated Radiation Therapy M6 System Equipped with InCiseTM2 Multileaf Collimator

  • Yoon, Jeongmin;Park, Kwangwoo;Kim, Jin Sung;Kim, Yong Bae;Lee, Ho
    • Progress in Medical Physics
    • /
    • v.29 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • This work reports the acceptance testing and commissioning experience of the Robotic Intensity-Modulated Radiation Therapy (IMRT) M6 system with a newly released $InCise^{TM}2$ Multileaf Collimator (MLC) installed at the Yonsei Cancer Center. Acceptance testing included a mechanical interdigitation test, leaf positional accuracy, leakage check, and End-to-End (E2E) tests. Beam data measurements included tissue-phantom ratios (TPRs), off-center ratios (OCRs), output factors collected at 11 field sizes (the smallest field size was $7.6mm{\times}7.7mm$ and largest field size was $115.0mm{\times}100.1mm$ at 800 mm source-to-axis distance), and open beam profiles. The beam model was verified by checking patient-specific quality assurance (QA) in four fiducial-inserted phantoms, using 10 intracranial and extracranial patient plans. All measurements for acceptance testing satisfied manufacturing specifications. Mean leaf position offsets using the Garden Fence test were found to be $0.01{\pm}0.06mm$ and $0.07{\pm}0.05mm$ for X1 and X2 leaf banks, respectively. Maximum and average leaf leakages were 0.20% and 0.18%, respectively. E2E tests for five tracking modes showed 0.26 mm (6D Skull), 0.3 mm (Fiducial), 0.26 mm (Xsight Spine), 0.62 mm (Xsight Lung), and 0.6 mm (Synchrony). TPRs, OCRs, output factors, and open beams measured under various conditions agreed with composite data provided from the manufacturer to within 2%. Patient-specific QA results were evaluated in two ways. Point dose measurements with an ion chamber were all within the 5% absolute-dose agreement, and relative-dose measurements using an array ion chamber detector all satisfied the 3%/3 mm gamma criterion for more than 90% of the measurement points. The Robotic IMRT M6 system equipped with the $InCise^{TM}2$ MLC was proven to be accurate and reliable.

Forecasting the Steel Cargo Volumes in Incheon Port using System Dynamics (System Dynamics를 활용한 인천항 철재화물 물동량 예측에 관한 연구)

  • Park, Sung-Il;Jung, Hyun-Jae;Jeon, Jun-Woo;Yeo, Gi-Tae
    • Journal of Korea Port Economic Association
    • /
    • v.28 no.2
    • /
    • pp.75-93
    • /
    • 2012
  • The steel cargoes as the core raw materials for the manufacturing industry have important roles for increasing the handling volume of the port. In particular, steel cargoes are fundamental to vitalize Port of Incheon because they have recognized as the primary key cargo items among the bulk cargoes. In this respect, the IPA(Incheon Port Authority) ambitiously developed the port complex facilities including dedicated terminals and its hinterland in northern part of Incheon. However, these complex area has suffered from low cargo handling records and has faced operational difficulties due to decreased net profits. In general, the import and export steel cargo volumes are sensitively fluctuated followed by internal and external economy index. There is a scant of research for forecasting the steel cargo volume in Incheon port which used in various economy index. To fill the research gap, the aim of this research is to predict the steel cargoes of Port of Incheon using the well established methodology i.e. System Dynamics. As a result, steel cargoes volume dealt with in Incheon port is forecasted from about 8 million tons to about 10 million tons during simulation duration (2011-2020). The Mean Absolute Percentage Error (MAPE) is measured as 0.0013 which verifies the model's accuracy.

A Suggestion for Surface Reflectance ARD Building of High-Resolution Satellite Images and Its Application (고해상도 위성 정보의 지표 반사도 Analysis-Ready Data (ARD) 구축과 응용을 위한 제언)

  • Lee, Kiwon;Kim, Kwangseob
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1215-1227
    • /
    • 2021
  • Surface reflectance, as a product of the absolute atmospheric correction process of low-orbit satellite imagery, is the basic data required for accurate vegetation analysis. The Commission on Earth Observation Satellite (CEOS) has conducted research and guidance to produce analysis-ready data (ARD) on surface reflectance products for immediate use by users. However, this trend is still in the early stages of research dealing with ARD for high-resolution multispectral images such as KOMPSAT-3A and CAS-500, as it targets medium- to low-resolution satellite images. This study first summarizes the types of distribution of ARD data according to existing cases. The link between Open Data Cube (ODC), the cloud-based satellite image application platforms, and ARD data was also explained. As a result, we present practical ARD deployment steps for high-resolution satellite images and several types of application models in the conceptual level for high-resolution satellite images deployed in ODC and cloud environments. In addition, data pricing policies, accuracy quality issue, platform applicability, cloud environment issues, and international cooperation regarding the proposed implementation and application model were discussed. International organizations related to Earth observation satellites, such as Group on Earth Observations (GEO) and Committee on Earth Observation Satellites (CEOS), are continuing to develop system technologies and standards for the spread of ARD and ODC, and these achievements are expanding to the private sector. Therefore, a satellite-holder country looking for worldwide markets for satellite images must develop a strategy to respond to this international trend.

Development of a Stem Taper Equation and a Stem Table for Criptomeria japonica Stands in South Korea (삼나무의 수간곡선식 및 입목수간재적표 개발)

  • Ko, Chi-Ung;Lee, Seung-Hyun;Lee, Sun-Jung;Kim, Dong-Geun;Kang, Jin-Taek
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.461-467
    • /
    • 2020
  • The aim of this study was to utilize Kozak's stem taper model to develop both a stem taper equation and a stem volume table for Criptomeria japonica, a tree species distributed across Korea. A total of 1,000 sample trees were cut and collected across the country to measure their diameters by stem height. The equation was then used to estimate examine their stem shapes. Our results show that the Fitness Index for the equation was 98.7%, the Mean Absolute Deviation (MAD) was -0.0142, and the MAD was 1.1640, thus indicating a high level of fitness. A statistically significant difference (p < 0.05) was also found from the analysis of discrepancies between a current table and the new table used in this study. It is therefore suggested that the new table-with data from actual stands-will contribute to enhancing the accuracy of national and municipal forest statistics and reducing losses caused by imprecise data on available forest resources.

A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network (사례기반 추론기법과 인공신경망을 이용한 서비스 수요예측 프레임워크)

  • Hwang, Yousub
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.43-57
    • /
    • 2012
  • To enhance the competitive advantage in a constantly changing business environment, an enterprise management must make the right decision in many business activities based on both internal and external information. Thus, providing accurate information plays a prominent role in management's decision making. Intuitively, historical data can provide a feasible estimate through the forecasting models. Therefore, if the service department can estimate the service quantity for the next period, the service department can then effectively control the inventory of service related resources such as human, parts, and other facilities. In addition, the production department can make load map for improving its product quality. Therefore, obtaining an accurate service forecast most likely appears to be critical to manufacturing companies. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average simulation. However, these methods are only efficient for data with are seasonal or cyclical. If the data are influenced by the special characteristics of product, they are not feasible. In our research, we propose a forecasting framework that predicts service demand of manufacturing organization by combining Case-based reasoning (CBR) and leveraging an unsupervised artificial neural network based clustering analysis (i.e., Self-Organizing Maps; SOM). We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the service forecasting domain. Our proposed approach has several appealing features : (1) We applied CBR and SOM in a new forecasting domain such as service demand forecasting. (2) We proposed our combined approach between CBR and SOM in order to overcome limitations of traditional statistical forecasting methods and We have developed a service forecasting tool based on the proposed approach using an unsupervised artificial neural network and Case-based reasoning. In this research, we conducted an empirical study on a real digital TV manufacturer (i.e., Company A). In addition, we have empirically evaluated the proposed approach and tool using real sales and service related data from digital TV manufacturer. In our empirical experiments, we intend to explore the performance of our proposed service forecasting framework when compared to the performances predicted by other two service forecasting methods; one is traditional CBR based forecasting model and the other is the existing service forecasting model used by Company A. We ran each service forecasting 144 times; each time, input data were randomly sampled for each service forecasting framework. To evaluate accuracy of forecasting results, we used Mean Absolute Percentage Error (MAPE) as primary performance measure in our experiments. We conducted one-way ANOVA test with the 144 measurements of MAPE for three different service forecasting approaches. For example, the F-ratio of MAPE for three different service forecasting approaches is 67.25 and the p-value is 0.000. This means that the difference between the MAPE of the three different service forecasting approaches is significant at the level of 0.000. Since there is a significant difference among the different service forecasting approaches, we conducted Tukey's HSD post hoc test to determine exactly which means of MAPE are significantly different from which other ones. In terms of MAPE, Tukey's HSD post hoc test grouped the three different service forecasting approaches into three different subsets in the following order: our proposed approach > traditional CBR-based service forecasting approach > the existing forecasting approach used by Company A. Consequently, our empirical experiments show that our proposed approach outperformed the traditional CBR based forecasting model and the existing service forecasting model used by Company A. The rest of this paper is organized as follows. Section 2 provides some research background information such as summary of CBR and SOM. Section 3 presents a hybrid service forecasting framework based on Case-based Reasoning and Self-Organizing Maps, while the empirical evaluation results are summarized in Section 4. Conclusion and future research directions are finally discussed in Section 5.

Development of a water quality prediction model for mineral springs in the metropolitan area using machine learning (머신러닝을 활용한 수도권 약수터 수질 예측 모델 개발)

  • Yeong-Woo Lim;Ji-Yeon Eom;Kee-Young Kwahk
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.307-325
    • /
    • 2023
  • Due to the prolonged COVID-19 pandemic, the frequency of people who are tired of living indoors visiting nearby mountains and national parks to relieve depression and lethargy has exploded. There is a place where thousands of people who came out of nature stop walking and breathe and rest, that is the mineral spring. Even in mountains or national parks, there are about 600 mineral springs that can be found occasionally in neighboring parks or trails in the metropolitan area. However, due to irregular and manual water quality tests, people drink mineral water without knowing the test results in real time. Therefore, in this study, we intend to develop a model that can predict the quality of the spring water in real time by exploring the factors affecting the quality of the spring water and collecting data scattered in various places. After limiting the regions to Seoul and Gyeonggi-do due to the limitations of data collection, we obtained data on water quality tests from 2015 to 2020 for about 300 mineral springs in 18 cities where data management is well performed. A total of 10 factors were finally selected after two rounds of review among various factors that are considered to affect the suitability of the mineral spring water quality. Using AutoML, an automated machine learning technology that has recently been attracting attention, we derived the top 5 models based on prediction performance among about 20 machine learning methods. Among them, the catboost model has the highest performance with a prediction classification accuracy of 75.26%. In addition, as a result of examining the absolute influence of the variables used in the analysis through the SHAP method on the prediction, the most important factor was whether or not a water quality test was judged nonconforming in the previous water quality test. It was confirmed that the temperature on the day of the inspection and the altitude of the mineral spring had an influence on whether the water quality was unsuitable.

Improvement and Validation of Convective Rainfall Rate Retrieved from Visible and Infrared Image Bands of the COMS Satellite (COMS 위성의 가시 및 적외 영상 채널로부터 복원된 대류운의 강우강도 향상과 검증)

  • Moon, Yun Seob;Lee, Kangyeol
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.420-433
    • /
    • 2016
  • The purpose of this study is to improve the calibration matrixes of 2-D and 3-D convective rainfall rates (CRR) using the brightness temperature of the infrared $10.8{\mu}m$ channel (IR), the difference of brightness temperatures between infrared $10.8{\mu}m$ and vapor $6.7{\mu}m$ channels (IR-WV), and the normalized reflectance of the visible channel (VIS) from the COMS satellite and rainfall rate from the weather radar for the period of 75 rainy days from April 22, 2011 to October 22, 2011 in Korea. Especially, the rainfall rate data of the weather radar are used to validate the new 2-D and 3-DCRR calibration matrixes suitable for the Korean peninsula for the period of 24 rainy days in 2011. The 2D and 3D calibration matrixes provide the basic and maximum CRR values ($mm\;h^{-1}$) by multiplying the rain probability matrix, which is calculated by using the number of rainy and no-rainy pixels with associated 2-D (IR, IR-WV) and 3-D (IR, IR-WV, VIS) matrixes, by the mean and maximum rainfall rate matrixes, respectively, which is calculated by dividing the accumulated rainfall rate by the number of rainy pixels and by the product of the maximum rain rate for the calibration period by the number of rain occurrences. Finally, new 2-D and 3-D CRR calibration matrixes are obtained experimentally from the regression analysis of both basic and maximum rainfall rate matrixes. As a result, an area of rainfall rate more than 10 mm/h is magnified in the new ones as well as CRR is shown in lower class ranges in matrixes between IR brightness temperature and IR-WV brightness temperature difference than the existing ones. Accuracy and categorical statistics are computed for the data of CRR events occurred during the given period. The mean error (ME), mean absolute error (MAE), and root mean squire error (RMSE) in new 2-D and 3-D CRR calibrations led to smaller than in the existing ones, where false alarm ratio had decreased, probability of detection had increased a bit, and critical success index scores had improved. To take into account the strong rainfall rate in the weather events such as thunderstorms and typhoon, a moisture correction factor is corrected. This factor is defined as the product of the total precipitable waterby the relative humidity (PW RH), a mean value between surface and 500 hPa level, obtained from a numerical model or the COMS retrieval data. In this study, when the IR cloud top brightness temperature is lower than 210 K and the relative humidity is greater than 40%, the moisture correction factor is empirically scaled from 1.0 to 2.0 basing on PW RH values. Consequently, in applying to this factor in new 2D and 2D CRR calibrations, the ME, MAE, and RMSE are smaller than the new ones.