Browse > Article
http://dx.doi.org/10.7780/kjrs.2020.36.6.2.3

Validation of Surface Reflectance Product of KOMPSAT-3A Image Data: Application of RadCalNet Baotou (BTCN) Data  

Kim, Kwangseob (Department of Electronics and Information Engineering, Hansung University)
Lee, Kiwon (Department of Electronics and Information Engineering, Hansung University)
Publication Information
Korean Journal of Remote Sensing / v.36, no.6_2, 2020 , pp. 1509-1521 More about this Journal
Abstract
Experiments for validation of surface reflectance produced by Korea Multi-Purpose Satellite (KOMPSAT-3A) were conducted using Chinese Baotou (BTCN) data among four sites of the Radical Calibration Network (RadCalNet), a portal that provides spectrophotometric reflectance measurements. The atmosphere reflectance and surface reflectance products were generated using an extension program of an open-source Orfeo ToolBox (OTB), which was redesigned and implemented to extract those reflectance products in batches. Three image data sets of 2016, 2017, and 2018 were taken into account of the two sensor model variability, ver. 1.4 released in 2017 and ver. 1.5 in 2019, such as gain and offset applied to the absolute atmospheric correction. The results of applying these sensor model variables showed that the reflectance products by ver. 1.4 were relatively well-matched with RadCalNet BTCN data, compared to ones by ver. 1.5. On the other hand, the reflectance products obtained from the Landsat-8 by the USGS LaSRC algorithm and Sentinel-2B images using the SNAP Sen2Cor program were used to quantitatively verify the differences in those of KOMPSAT-3A. Based on the RadCalNet BTCN data, the differences between the surface reflectance of KOMPSAT-3A image were shown to be highly consistent with B band as -0.031 to 0.034, G band as -0.001 to 0.055, R band as -0.072 to 0.037, and NIR band as -0.060 to 0.022. The surface reflectance of KOMPSAT-3A also indicated the accuracy level for further applications, compared to those of Landsat-8 and Sentinel-2B images. The results of this study are meaningful in confirming the applicability of Analysis Ready Data (ARD) to the surface reflectance on high-resolution satellites.
Keywords
Absolute Atmospheric Correction; AERONET; KOMPSAT-3A; RadCalNet; Surface Reflectance;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Gascon, F., C. Bouzinac, O. Thepaut, M. Jung, B. Francesconi, J. Louis, V. Longou, B. Lafrance, S. Massera, A. Gaudel-Vacaresse, F. Languille, B. Alhammoud, F. Viallefont, B. Pflug, J. Bieniarz, S. Clerc, L. Pessiot, T. Tremas, E. Cadau, R. D. Bonis, C. Isola, P. Martimort, and V. Fernandez, 2017. Copernicus Sentinel-2A Calibration and Products Validation Status, Remote Sensing, 9(6): 584.   DOI
2 She, L., L. Mei, Y. Xue, Y. Che, and J. Guang, 2017. SAHARA: A Simplified AtmospHeric Correction AlgoRithm for Chinese gAofen Data: 1. Aerosol Algorithm, Remote Sensing, 9: 253.   DOI
3 SI Imaging Services, 2017. KOMPSAT-3A Image Data Manual v1.4, http://www.si-imaging.com/resources/?uid=337&mod=document, Accessed on Aug. 10, 2020.
4 SI Imaging Services, 2019. KOMPSAT-3A Image Data Manual v1.5, http://www.si-imaging.com/resources/?pageid=5&uid=234&mod=document, Accessed on Aug. 10, 2020.
5 Xu, J., Z. Chen, H. Zhang, B. Zhang, and T. Liu, 2019. Preliminary validation of GF-1/GF-2 surface reflectance products over land using VNIR atmospheric correction method, Proc. of SPIE Remote Sensing of Clouds and the Atmosphere XXIV, Strasbourg, FRA, Oct. 9, vol. 11152.
6 Xu, Y., L. Feng, D. Zhao, and J. Lu, 2020. Assessment of Landsat Atmospheric Correction Methods for Water Color Applications using Global AERONET-OC Data, International Journal of Applied Earth Observation and Geoinformation, 93: 102192.   DOI
7 Zhu, Z., 2019. Science of Landsat Analysis Ready Data, Remote Sensing, 11(18): 2166.   DOI
8 Lamquin, N., E. Woolliams, V. Bruniquel, F. Gascon, J. Gorrono, Y. Govaerts, V. Leroy, V. Lonjou, B. Alhammoud, J. A. Barsi, J. S. Czapla-Myers, J. McCorkel, D. Helder, B. Lafrance, S. Clerc, and B. N. Holben, 2019. An Inter-comparison Exercise of Sentinel-2 Radiometric Validations Assessed by Independent Expert Groups, Remote Sensing of Environment, 233: 111369.   DOI
9 Lee, K. and K. Kim, 2020. Validation of Surface Reflectance Product of KOMPSAT-3A Image Data Using RadCalNet Data, Korean Journal of Remote Sensing, 36(2-1): 167-178 (in Korean with English abstract).   DOI
10 Lee, K. and K. Kim, 2019. An Experiment for Surface Reflectance Image Generation of KOMPSAT 3A Image Data by Open Source Implementation, Korean Journal of Remote Sensing, 35(6-4): 1327-1339 (in Korean with English abstract).   DOI
11 Lee, K., K. Kim, S. Lee, and Y. Kim, 2020. Determination of the Normalized Difference Vegetation Index (NDVI) with Top-of-Canopy(TOC) Reflectance from a KOMPSAT-3A Image Using Orfeo ToolBox (OTB) Extension, International Journal of Geo-Information, 9(4): 257.   DOI
12 Lee, K.-H. and J.-M. Yum, 2019. A Review on Atmospheric Correction Technique Using Satellite Remote Sensing, Korean Journal of Remote Sensing, 35(6-1): 1011-1030 (in Korean with English abstract).   DOI
13 Lee, K.-S., 2019. Atmospheric Correction Issues of Optical Imagery in Land Remote Sensing, Korean Journal of Remote Sensing, 35(6-3): 1299-1312 (in Korean with English abstract).   DOI
14 RadCalNet, 2018. RadCalNet Quick Start Guide, https://www.radcalnet.org/resources/RadCalNetQuickstart Guide_20180702.pdf, Accessed on Aug. 3, 2020.
15 Giles, D. M., A. Sinyuk, M. G. Sorokin, J. S. Schafer, A. Smirnov, H. Slutsker, T. F. Eck, B. N. Holben, J. R. Lewis, J. R. Campbell, E. J. Welton, S. V. Korkin, and A. I. Lyapustin, 2018. Advancements in the Aerosol Robotic Network (AERONET) Version 3 Database - Automated Near-real-time Quality Control Algorithm with Improved Cloud Screening for Sun Photometer Aerosol Optical Depth (AOD) Measurements, Atmospheric Measurement Techniques, 12(1): 169-209.   DOI
16 Grizonnet, M., J. Michel, V. Poughon, J. Inglada, M. Savinaud, and R. Cresson, 2017. Orfeo ToolBox: open source processing of remote sensing images, Open Geospatial Data, Software and Standards, 2(1): 1-8.   DOI
17 Kuester, M. and T. Ochoa, 2020. Absolute Radiometric Calibration is an Essential Tool to Imagery Science, But What is it?, https://blog.maxar.com/earth-intelligence/2020/absolute-radiometric-calibration-is-an-essential-tool-to-imagery-science-but-what-is-it, Accessed on Aug. 3, 2020.
18 Jin, C., H. Ahn, D. Seo, and C. Choi, 2020. Radiometric Calibration and Uncertainty Analysis of KOMPSAT-3A using the Reflectance-based Method, Sensors, 20(9): 2564.   DOI
19 Jing, X., L. Leigh, C. T. Pinto, and D. Helder, 2019. Evaluation of RadCalNet Output Data Using Landsat 7, Landsat 8, Sentinel 2A, and Sentinel 2B Sensors, Remote Sensing, 11(5): 541.   DOI
20 Kuester, M. and T. Ochoa, 2019. Improvements in Calibration, and Validation of the Absolute Radiometric Response of MAXAR EarthObserving Sensors, Presentation Material of Joint Agency Commercial Imagery Evaluation (JACIE) Workshop, Reston, VA, USA, Sep. 24-26, pp. 1-18.
21 Kuhn, C., A. M. Valerio, N. Ward, L. Loken, H. O. Sawakuchi, M. Kampel, J. Richey, P. Stadler, J. Crawford, R. Striegl, E. Vermote, N. Pahlevan, and D. Butman, 2019. Performance of Landsat-8 and Sentinel-2 Surface Reflectance Products for River Remote Sensing Retrievals of Chlorophyll-a and Turbidity, Remote Sensing of Environment, 224: 104-118.   DOI
22 Bouvet, M., K. Thome, B. Berthelot, A. Bialek, J. Czapla-Myers, M. P. Fox, P. Goryl, P. Henry, L. Ma, S. Marcq, A. Meygret, B. N. Wenny, and E. R. Woolliams, 2019. RadCalNet: A Radiometric Calibration Network for Earth Observing Imagers Operating in the Visible to Shortwave Infrared Spectral Range, Remote Sensing, 11(20): 2401.   DOI
23 Dwyer, J. L., D. P. Roy, B. Sauer, C. B. Jenkerson, H. K. Zhang, and L. Lymburner, 2018. Analysis Ready Data: Enabling Analysis of the Landsat Archive, Remote Sensing, 10(9): 1363.