• Title/Summary/Keyword: absolute localization

Search Result 60, Processing Time 0.026 seconds

A Modified Range-free localization algorithm for Wireless Sensor Networks (무선 센서 네트워크를 위한 개선된 Range-free 위치인식 알고리즘)

  • Ekale, Etinge Martin;Lee, Chaewoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.829-832
    • /
    • 2010
  • Wireless Sensor Networks have been proposed for several location-dependent applications. For such systems, the cost and limitations of the hardware on sensing nodes prevent the use of range-based localization schemes that depend on absolute point to point distance estimates. Because coarse accuracy is sufficient for most sensor network applications, solutions in range-free localization are being pursued as a cost-effective alternative to more expensive range-based approaches. In this paper, we proposed a modified DV-Hop (range-free localization) algorithm which reduces node's location error and cumulated distance error by minimizing localization error. Simulation results have verified the high estimation accuracy with our approach which outperforms the classical DV-Hop.

Position Estimation of Mobile Robots using Multiple Active Sensors with Network

  • Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.280-285
    • /
    • 2011
  • Recently, with the development of service robots and the concept of ubiquitous, the position estimation of mobile objects has received great interest. Some of the localization schemes are introduced, which provide the relative location of the moving objects subjected to accumulated errors. To implement a real time localization system, a new absolute position estimation method for a mobile robot in indoor environment is proposed. Design and implementation of the localization system comes from the usage of active beacon systems (based upon RFID technology). The active beacon system is composed of an RFID receiver and an ultra-sonic transmitter. The RFID receiver gets the synchronization signal from the mobile robot and the ultra-sonic transmitter sends out the traveling signal to be used for measuring the distance. Position of a mobile robot in a three dimensional space can be calculated basically from the distance information from three beacons and the absolute position information of the beacons themselves. In some case, the mobile robot can acquire the ultrasonic signals from only one or two beacons, due to the obstacles located along the moving path. In this paper, a position estimation scheme using fewer than three sensors is developed. Also, the extended Kalman filter algorithm is applied for the improvement of position estimation accuracy of the mobile robot.

Indoor Localization Scheme of a Mobile Robot Applying REID Technology (RFID 응용 기술을 이용한 이동 로봇의 실내 위치 추정)

  • Kim Sung-Bu;Lee Dong-Hui;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.996-1001
    • /
    • 2005
  • Recently, with the development of service robots and with the new concept of ubiquitous world, the position estimation of mobile objects has been raised to an important problem. As pre-liminary research results, some of the localization schemes are introduced, which provide the relative location of the moving objects subjected to accumulated errors. To implement a real time localization system, a new absolute position estimation method for a mobile robot in indoor environment is proposed in this paper. Design and implementation of the localization system comes from the usage of active beacon systems (based upon RFID technology). The active beacon system is composed of an RFID receiver and an ultra-sonic transmitter: 1. The RFID receiver gets the synchronization signal from the mobile robot and 2. The ultra-sonic transmitter sends out the traveling signal to be used for measuring the distance. Position of a mobile robot in a three dimensional space can be calculated basically from the distance information from. Three beacons and the absolute position information of the beacons themselves. In some case, the mobile robot can get the ultrasonic signals from only one or two beacons, because of the obstacles located along the moving path. Therefore, in this paper, as one of our dedicated contribution, the position estimation scheme with less than three sensors has been developed. Also, the extended Kalman filter algorithm is applied for the improvement of position estimation accuracy of the mobile robot.

Impact localization method for composite structures subjected to temperature fluctuations

  • Gorgin, Rahim;Wang, Ziping
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.371-383
    • /
    • 2022
  • A novel impact localization method is presented based on impact induced elastic waves in sensorized composite structure subjected to temperature fluctuations. In real practices, environmental and operational conditions influence the acquired signals and consequently make the feature (particularly Time of Arrival (TOA)) extraction process, complicated and troublesome. To overcome this complication, a robust TOA estimation method is proposed based on the times in which the absolute amplitude of the signal reaches to a specific amplitude value. The presented method requires prior knowledge about the normalized wave velocity in different directions of propagation. To this aim, a finite element model of the plate was built in ABAQUS/CAE. The impact location is then highlighted by calculating an error value at different points of the structure. The efficiency of the developed impact localization technique is experimentally evaluated by dropping steel balls with different energies on a carbon fiber composite plate with different temperatures. It is demonstrated that the developed technique is able to localize impacts with different energies even in the presence of noise and temperature fluctuations.

Relative localization errors: The effect of reference location on the errors (상대적인 위치지각의 왜곡: 참조자극의 위치가 왜곡에 미치는 영향)

  • Li, Hyung-Chul
    • Korean Journal of Cognitive Science
    • /
    • v.15 no.3
    • /
    • pp.15-24
    • /
    • 2004
  • The perceived position of a flashing target object is generally biased towards the direction of eye movement when there is no reference around the target. Current research examined the localization accuracy of a flashing target relative to a static reference. The perceived location of the target relative to the reference was distorted and the pattern of perceptual distortion systematically depended on the position of the reference relative to the target. This kind of result was consistently observed regardless of the distance between the reference and the target and direction of pursuit eye movement. We have discussed how these results could he explained by the theories previously suggested to explain the localization of objects.

  • PDF

USAT(Ultrasonic Satellite System) for the Autonomous Mobile Robots Localization (무인 이동 로봇 위치추정을 위한 초음파 위성 시스템)

  • Lee, Dong-Hwal;Kim, Su-Yong;Yoon, Kang-Sup;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.956-961
    • /
    • 2007
  • We propose a new distance measurement method and local positioning system for the autonomous mobile robots localization. The distance measurement method is able to measure long-range distances with a high accuracy by using ultrasonic sensors. The time of flight of the ultrasonic waves include various noises is calculated accurately by the proposed period detecting method. The proposed local positioning system is composed of four ultrasonic transmitters and one ultrasonic receiver. The ultrasonic transmitter and receiver are separated but they are synchronized by RF (Radio frequency) signal. The proposed system using ultrasonic waves is represented as USAT(Ultrasonic Satellite System). USAT is able to estimate the position using the least square estimation. The experimental results show that the proposed local positioning system enables to estimate the absolute position precisely.

A study on localization and compensation of mobile robot using fusion of vision and ultrasound (영상 및 거리정보 융합을 이용한 이동로봇의 위치 인식 및 오차 보정에 관한 연구)

  • Jang, Cheol-Woong;Jung, Ki-Ho;Jung, Dae-Sub;Ryu, Je-Goon;Shim, Jae-Hong;Lee, Eung-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.554-556
    • /
    • 2006
  • A key component for autonomous mobile robot is to localize ifself. In this paper we suggest a vision-based localization and compensation of robot's location using ultrasound. Mobile robot travels along wall and searches each feature in indoor environment and transformed absolute coordinates of actuality environment using these points and builds a map. And we obtain information of the environment because mobile robot travels along wall. Localzation search robot's location candidate point by ultrasound and decide position among candidate point by features matching.

  • PDF

A Correction System of Odometry Error for Map Building of Mobile Robot Based on Sensor fusion

  • Hyun, Woong-Keun
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.709-715
    • /
    • 2010
  • This paper represents a map building and localization system for mobile robot. Map building and navigation is a complex problem because map integrity cannot be sustained by odometry alone due to errors introduced by wheel slippage, distortion and simple linealized odometry equation. For accurate localization, we propose sensor fusion system using encoder sensor and indoor GPS module as relative sensor and absolute sensor, respectively. To build a map, we developed a sensor based navigation algorithm and grid based map building algorithm based on Embedded Linux O.S. A wall following decision engine like an expert system was proposed for map building navigation. We proved this system's validity through field test.

An Efficient Localization of Mobile Robot in RFID Sensor Space (RFID 센서 공간에서의 모바일 로봇의 효율적인 위치 인식)

  • Choi, Byoung-Suk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.15-22
    • /
    • 2006
  • This paper presents an efficient localization scheme for an indoor mobile robot using RFID tags on the floor. The mobile robot carries an RFID reader at the bottom, which reads the RFID tags on the floor to localize the mobile robot. Each RFID tar on the floor stores its own absolute position which is used to calculate the position and velocity of the mobile robot. Locating the RFID tags on the floor, which constructs an intelligent sensor space, may require several factors to be considered: economics feasibility and accuracy. In this paper, the optimal allocation scheme of the RFID tags on the floor to satisfy the accuracy constraint has been proposed and verified by the experiments. Based on the RFID reading, the mobile robot navigation has been successfully demonstrated to avoid obstacles and to reach the goal within a pre-specified time.

Coefficient Allocated DV-Hop algorithm for Wireless Sensor Networks localization (무선 센서 네트워크를 위한 DV-Hop 기반 계수 할당을 통한 위치 인식 알고리즘)

  • Ekale, Etinge Martin;Lee, Chaewoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.837-840
    • /
    • 2010
  • Wireless Sensor Networks have been proposed for several location-dependent applications. For such systems, the cost and limitations of the hardware on sensing nodes prevent the use of range-based localization schemes that depend on absolute point to point distance estimates. Because coarse accuracy is sufficient for most sensor network applications, solutions in range-free localization are being pursued as a cost-effective alternative to more expensive range-based approaches. In this paper, we proposed a Coefficient Allocated DV-Hop (CA DV-Hop) algorithm which reduces node's location error by awarding a credit value with respect to number of hops of each anchor to an unknown node. Simulation results have verified the high estimation accuracy with our approach which outperforms the classical DV-Hop.