• 제목/요약/키워드: abrasive wear

검색결과 286건 처리시간 0.029초

미끄럼 속도 변화에 따른 폴리우레탄 씰의 마모 특성 (Effect of Sliding Speed on Wear Characteristics of Polyurethane Seal)

  • 김한솔;전홍규;정구현
    • Tribology and Lubricants
    • /
    • 제34권2호
    • /
    • pp.49-54
    • /
    • 2018
  • Hydraulic reciprocating seal has been widely used to prevent fluid leakage in hydraulic systems. Also, hydraulic reciprocating seal plays a significant role to provide lubricant film at contacting interface to minimize tribological problems due to sliding with counter material. To predict lifetime of hydraulic reciprocating seal, quantitative understanding of wear characteristics with respect to operating conditions such as normal force and sliding speed is needed. In this work, effect of sliding speed on wear of polyurethane (PU) hydraulic reciprocating seal were experimentally investigated using a pin-on-disk tribo-tester. The wear characteristics of PU specimens were quantitatively determined by comparing the confocal microscope data before and after test. It was found that the wear rate of PU specimens decreased from $4.9{\times}10^{-11}mm^3$ to $1.1{\times}10^{-11}mm^3/Nm$ as sliding speed increased from 120 mm/s to 940 mm/s. Also, it was observed that the friction decreased slightly as the sliding speed increased. Improvement of lubrication state with increasing sliding speed was likely to be responsible for this enhanced friction and wear characteristics. This result also suggests that decrease in sliding distance between PU elastomer and counter materials at lower sliding speed is preferred. Furthermore, the quantitative assessment of wear characteristics of PU specimen may be useful in prediction of lifetime of PU hydraulic reciprocating seal if the allowed degree of wear for failure of the seal is provided.

과공정 Al-15wt.%Si 압출재와 회주철의 미세조직 및 엔진 오일 환경에서의 마모 특성 (Microstructure and Wear Properties in an Engine Oil Environment of Extruded Hyper-eutectic Al-15wt.%Si Alloy and Gray Cast Iron)

  • 강연지;김종호;황종일;이기안
    • 소성∙가공
    • /
    • 제27권6호
    • /
    • pp.339-346
    • /
    • 2018
  • This study investigated the microstructure and wear properties of extruded hyper-eutectic Al-Si (15wt.%) alloy in an engine oil environment. The wear mechanism of the material was also analyzed and compared to conventional gray cast iron. In microstructural observation results of Al-15wt.%Si alloy, primary Si phase ($45.3{\mu}m$) and eutectic Si phase ($3.1{\mu}m$) were found in the matrix, and the precipitations of $Mg_2Si({\beta}^{\prime})$, $Al_2Cu({\theta}^{\prime})$ and $Al_6(Mn,Fe)$ were also detected. In the case of gray cast iron, ferrite and pearlite were observed. It was also observed that flake graphite ($20-130{\mu}m$) were randomly distributed. Wear rates were lower in the Al-Si alloy as compared to those of gray cast iron in all load conditions, confirming the outstanding wear resistance of Al-15wt.%Si alloy in engine oil environment. In the $4kg_f$ condition, the wear rate of gray cast iron was $6.0{\times}10^{-5}$ and that of Al-Si measured $0.8{\times}10^{-5}$. The microstructures after wear of the two materials were analyzed using scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The primary Si and eutectic Si of Al-Si alloy effectively mitigated the abrasive wear, and the Al matrix effectively endured to accept a significant amount of plastic deformation caused by wear.

The Lubricant Effect of Oxidation and Wear Products of HVOF Co-alloy T800 Powder Coating

  • Cho, Tong Yul;Yoon, Jae Hong;Kim, Kil Su;Song, Ki Oh;Youn, Suk Jo;Chun, Hui Gon;Hwang, Soon Young
    • Corrosion Science and Technology
    • /
    • 제6권4호
    • /
    • pp.159-163
    • /
    • 2007
  • Micron size Co-alloy 800 (T800) powder is coated on the high temperature, oxidation and corrosion resistant super alloy Inconel 718 substrate by the optimal high velocity oxy-fuel (HVOF) thermal spray coating process developed by this laboratory. For the study of durability improvement of high speed spindle operating without lubricants, friction and sliding wear behaviors of the coatings are investigated both at room and at an elevated temperature of $1000^{\circ}F(538^{\circ}C)$. Friction coefficients, wear traces and wear debris of coatings are drastically reduced compared to those of non-coated surface of Inconel 718 substrate both at room temperature and at $538^{\circ}C$. Friction coefficients and wear traces of both coated and non-coated surfaces are drastically reduced at higher temperature of $538^{\circ}C$ compared with those at room temperature. At high temperature, the brittle oxides such as CoO, $Co_{3}O_{4}$, $MoO_2$ and $MoO_3$ are formed rapidly on the sliding surfaces, and the brittle oxide phases are easily attrited by reciprocating slides at high temperature through oxidation and abrasive wear mechanisms. The brittle solid oxide particles, softens, melts and partial-melts play roles as solid and liquid lubricants reducing friction coefficient and wear. These show that the coating is highly recommendable for the durability improvement coating on the machine component surfaces vulnerable to frictional heat and wear.

입자충전 초고분자량 폴리에틸렌의 마모특성 : 입자충전 방법의 효과 (Effect of Mixing Process on the Wear Properties of UHMWPE/Kaolin Composite)

  • 기남;이건웅;윤호규;박홍조;곽순종;김준경;박민
    • 폴리머
    • /
    • 제26권6호
    • /
    • pp.803-811
    • /
    • 2002
  • 본 연구에서는 상이한 방법을 통하여 제조된 초고분자량 폴리에틸렌 (ultra high molecular polyethylene, UHMWPE)/카올린 복합재료의 마모 특성에 대하여 살펴보았다. 카올린 입자는 중합충전(in-situ polymerization)법과 분말 혼합법의 두 가지 상이한 방법을 통하 UHMWPE와 복합화되었으며 특히 분말 혼합법에서는 입자상으로 구성된 두 재료의 혼합 방법에 따른 입자 분산 및 마모 특성에 대하여 분석하였다. 제조된 복합재료의 마모실험에서 입자 충전에 의하여 내마모성이 크게 향상되었는데 연삭마모가 지배적인 마모기구였으며, 중합충전법이 내마모성 향상에 있어서 분말혼합법에 비하여 효과적이었다. 또한 충전된 입자의 분산 상태와 계면 특성이 내마모성 향상에 중요한 변수임을 확인할 수 있었다.

알루미늄 압출용 금형의 내마모성향상을 위한 TiN, CrN 코팅 (TiN and CrN Coating for the Increase of Abrasive Resistance of Extrusion Mold for Aluminium)

  • 김민석;강승민;김동원;김상호
    • 한국표면공학회지
    • /
    • 제42권6호
    • /
    • pp.272-275
    • /
    • 2009
  • The purpose of this study is to show the friction and wear characteristic behaviors of TiN and CrN coated SKD61 which is applied to Al 6xxx extrusion mold material. The friction and wear characteristic behaviors of both coating layers were investigated by the reciprocating friction wear tester under atmospheric pressure and un-lubricated state. The processing parameters in this study were temperature (50 and $120^{\circ}C$) and load (3, 5, and 11 kgf). This study was carried out while comparing the coefficient of friction and microstructure of TiN and CrN coating layers on SKD61. The coefficient of friction of CrN became lower than that of TiN at all conditions. Therefore, CrN was suggested to be more advantageous than TiN for extrusion mold.

하이브리드 코팅시스템에 의해 제조된 Ti-Si-N 코팅막의 상대재에 대한 마모거동 연구 (Tribological Behaviors Against Counterpart Materials of Ti-Si-N Coating Layers Prepared by a Hybrid Coating System)

  • 박옥남;박종현;윤석영;권식철;김광호
    • 한국표면공학회지
    • /
    • 제36권2호
    • /
    • pp.116-121
    • /
    • 2003
  • Ti-Si-N coating layers were deposited onto WC-Co substrates by a hybrid system of arc ion plating (AIP) and sputtering techniques. The tribological behaviors of Ti-Si-N coating layers with various Si contents were investigated by the dry sliding wear experiments, which were conducted at three different sliding speeds, 0.1, 0.3, 0.5 m/s, against the steel and alumina balls. In the case of steel ball, the average friction coefficient slightly decreased with increasing the sliding speed regardless of Si content due to adhesive wear behavior between coating layer and steel ball. At constant sliding speed, the average friction coefficient decreased with increase of Si content. On the contrary, in the case of alumina ball, the average friction coefficient increased with increasing the sliding speed regardless of Si content, indicating that the abrasive wear behavior was more dominant when the coating layers slide against alumina ball. Through these experimental results, it was found that the tribological behaviors of Ti-Si-N coating layers were effected by factors such as Si content, sliding speed, and kinds of counterpart materials rather than the hardness of coating layer.

Data-mining modeling for the prediction of wear on forming-taps in the threading of steel components

  • Bustillo, Andres;Lopez de Lacalle, Luis N.;Fernandez-Valdivielso, Asier;Santos, Pedro
    • Journal of Computational Design and Engineering
    • /
    • 제3권4호
    • /
    • pp.337-348
    • /
    • 2016
  • An experimental approach is presented for the measurement of wear that is common in the threading of cold-forged steel. In this work, the first objective is to measure wear on various types of roll taps manufactured to tapping holes in microalloyed HR45 steel. Different geometries and levels of wear are tested and measured. Taking their geometry as the critical factor, the types of forming tap with the least wear and the best performance are identified. Abrasive wear was observed on the forming lobes. A higher number of lobes in the chamber zone and around the nominal diameter meant a more uniform load distribution and a more gradual forming process. A second objective is to identify the most accurate data-mining technique for the prediction of form-tap wear. Different data-mining techniques are tested to select the most accurate one: from standard versions such as Multilayer Perceptrons, Support Vector Machines and Regression Trees to the most recent ones such as Rotation Forest ensembles and Iterated Bagging ensembles. The best results were obtained with ensembles of Rotation Forest with unpruned Regression Trees as base regressors that reduced the RMS error of the best-tested baseline technique for the lower length output by 33%, and Additive Regression with unpruned M5P as base regressors that reduced the RMS errors of the linear fit for the upper and total lengths by 25% and 39%, respectively. However, the lower length was statistically more difficult to model in Additive Regression than in Rotation Forest. Rotation Forest with unpruned Regression Trees as base regressors therefore appeared to be the most suitable regressor for the modeling of this industrial problem.

합금크롬주철의 탄화물형상 및 열처리가 내마모성에 미치는 영향 (Effects of Carbide Morphology and Heat Treatment on Abrasion Wear Resistance of Chromium White Cast Irons)

  • Yu, Sung-Kon;Matsubara, Yasuhiro
    • 한국재료학회지
    • /
    • 제12권5호
    • /
    • pp.407-413
    • /
    • 2002
  • Eutectic high chromium cast irons containing 17%Cr and 26%Cr were produced for this research by making each of them solidify unidirectionally. Abrasion wear test against SiC or $Al_2$O$_3$bonded paper was carried out using test pieces cut cross-sectionally at several distances from the chill face of castings. The wear resistance was evaluated in connection with the parameters such as eutectic colony size($E_w$), area fraction of boundary region of the colony($S_B$) where comparatively large massive chromium carbides are crystallized and, average diameter of chromium carbides in the boundary region($D_c$). The wear rate($R_w$), which is a gradient of straight line of wear loss versus testing time, was influenced by the type and the particle size of the abrasives. The $R_w$ value against SiC was found to be larger than that against A1$_2$O$_3$under the similar abrasive particle size. In the case of SiC, the $R_w$ value increased with an increase in the particle size. The $R_w$ value also increased as the eutectic colony size decreased, and that of the 17%Cr iron was larger than that of the 26%Cr iron at the same $E_w$ value. Both of the $S_B$ and $D_c$ values were closely related to the $R_w$ value regardless of chromium content of the specimens. The $R_w$ values of the annealed specimens were greater than those of the as-cast specimens because of softened matrix structures. As for the relationship between wear rate and macro-hardness of the specimens, the hardness resulting in the minimum wear rate was found to be at 550 HV30.

CMP 컨디셔너의 다이아몬드 입자 모양이 연마 패드 표면 형상 제어에 미치는 영향 (Effect of Diamond Abrasive Shape of CMP Conditioner on Polishing Pad Surface Control)

  • 이동환;이기훈;정선호;김형재;조한철;정해도
    • Tribology and Lubricants
    • /
    • 제35권6호
    • /
    • pp.330-336
    • /
    • 2019
  • Conditioning is a process involving pad surface scraping by a moving metallic disk that is electrodeposited with diamond abrasives. It is an indispensable process in chemical-mechanical planarization, which regulates the pad roughness by removing the surface residues. Additionally, conditioning maintains the material removal rates and increases the pad lifetime. As the conditioning continues, the pad profile becomes unevenly to be deformed, which causes poor polishing quality. Simulation calculates the density at which the diamond abrasives on the conditioner scratch the unit area on the pad. It can predict the profile deformation through the control of conditioner dwell time. Previously, this effect of the diamond shape on conditioning has been investigated with regard to microscopic areas, such as surface roughness, rather than global pad-profile deformation. In this study, the effect of diamond shape on the pad profile is evaluated by comparing the simulated and experimental conditioning using two conditioners: a) random-shaped abrasive conditioner (RSC) and b) uniform-shaped abrasive conditioner (USC). Consequently, it is confirmed that the USC is incapable of controlling the pad profile, which is consistent with the simulation results.