Effect of Mixing Process on the Wear Properties of UHMWPE/Kaolin Composite

입자충전 초고분자량 폴리에틸렌의 마모특성 : 입자충전 방법의 효과

  • Ki, Nam (Polymer Hybrid Research Center, KIST) ;
  • Lee, Geon-Woong (Polymer Hybrid Research Center, KIST) ;
  • Yoon, Ho-Gyu (Korea University, Division of Material Science & Engineering) ;
  • Park, Hong-Jo (Polymer Hybrid Research Center, KIST) ;
  • Kwak, Soon-Jong (Polymer Hybrid Research Center, KIST) ;
  • Kim, Jun-Kyung (Polymer Hybrid Research Center, KIST) ;
  • Park, Min (Polymer Hybrid Research Center, KIST)
  • 기남 (한국과학기술연구원 고분자하이브리드연구센터) ;
  • 이건웅 (한국과학기술연구원 고분자하이브리드연구센터) ;
  • 윤호규 (고려대학교 재료공학과) ;
  • 박홍조 (한국과학기술연구원 고분자하이브리드연구센터) ;
  • 곽순종 (한국과학기술연구원 고분자하이브리드연구센터) ;
  • 김준경 (한국과학기술연구원 고분자하이브리드연구센터) ;
  • 박민 (한국과학기술연구원 고분자하이브리드연구센터)
  • Published : 2002.11.01

Abstract

In this study the wear behavior of ultra high molecular polyethylene (UHMWPE) filled with kaolin particles by different methods was investigated. UHMWPE/kaolin composites were prepared by two different methods: polymerization-filling and powder mixing. Particularly in a powder mixing method. Particle dispersion and wear property according to powder mining method were examined. It was found from wear test that filling of inorganic filler into UHMWPE by polymerization filling was more effective way than by powder mixing method in improving Wear resistance of UHMWPE. It was also confirmed that abrasive wear was dominant wear mechanism and particle dispersion in the composite as well as interface property was an important factor in controlling the wear behavior of the resulting composites.

본 연구에서는 상이한 방법을 통하여 제조된 초고분자량 폴리에틸렌 (ultra high molecular polyethylene, UHMWPE)/카올린 복합재료의 마모 특성에 대하여 살펴보았다. 카올린 입자는 중합충전(in-situ polymerization)법과 분말 혼합법의 두 가지 상이한 방법을 통하 UHMWPE와 복합화되었으며 특히 분말 혼합법에서는 입자상으로 구성된 두 재료의 혼합 방법에 따른 입자 분산 및 마모 특성에 대하여 분석하였다. 제조된 복합재료의 마모실험에서 입자 충전에 의하여 내마모성이 크게 향상되었는데 연삭마모가 지배적인 마모기구였으며, 중합충전법이 내마모성 향상에 있어서 분말혼합법에 비하여 효과적이었다. 또한 충전된 입자의 분산 상태와 계면 특성이 내마모성 향상에 중요한 변수임을 확인할 수 있었다.

Keywords

References

  1. Low Friction Arthroplasty of The Hip: Theory and Parctice Low Friction Principle J. Charney
  2. J. Biomed. Mater. Res. v.11 W. Waugh https://doi.org/10.1002/jbm.820110202
  3. J. Arthroplasty v.15 A. A. Edidin;S. M. Kurtz https://doi.org/10.1016/S0883-5403(00)90647-8
  4. Clin. Mater. v.14 G. W. Bradley;M. A. R. Freem;M. A. Tuke;H. A. McKellop https://doi.org/10.1016/0267-6605(93)90034-5
  5. J. Bone Joint Surg. v.70-A T. M. Wright;C. M. Rimnac;P. M. Faris;M. Bansal
  6. J. Appl. Phys. v.24 J. F. Archard https://doi.org/10.1063/1.1721448
  7. Composite Materials Series 1 Friction and Wear of Polymer Composites K. Friedrich
  8. Wear v.123 K. Hokkirigawa;K. Kato https://doi.org/10.1016/0043-1648(88)90102-0
  9. Wear v.25 N. P. Suh https://doi.org/10.1016/0043-1648(73)90125-7
  10. Biomaterials v.23 S. Affatato;B. Bordini;C. Fagnano;P. Taddei;A. Tinti;A. Toni https://doi.org/10.1016/S0142-9612(01)00265-4
  11. Biomaterials v.22 G. Lewis https://doi.org/10.1016/S0142-9612(00)00195-2
  12. Wear v.181;182;183 A. Wang;D. C. Sun;C. Stark;J. H. Dumbleton
  13. Wear v.249 A. P. D. Elfick;S. L. Smith;S. M. Green;A. Unsworth https://doi.org/10.1016/S0043-1648(01)00589-0
  14. J. Bone Joint Surg. v.74-A T. P. Schmalzried;M. Jasty;W. H. Harris
  15. Wear v.162;163;164 D. G. Bellow;N. S. Viswanath