• Title/Summary/Keyword: abrasive blasting

Search Result 37, Processing Time 0.024 seconds

Micro Groove Cutting of Glass Using Abrasive Jet Machining (Abrsive Jet Machining을 이용한 유리의 미세 홈 가공)

  • 최종순;박경호;박동삼
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.963-966
    • /
    • 2000
  • Abrasive jet machining(AJM) process is similar to the sand blasting, and effectively removes hard and brittle materials. AJM has applied to rough working such as deburring and rough finishing. As the needs for machining of ceramics, semiconductor, electronic devices and LCD are increasing, micro AJM was developed, and became the inevitable technique to micromachining. This paper describes the performance of the micro AJM in micro groove cutting of glass. Diameter of hole and width of line in this groove cutting is 80${\mu}{\textrm}{m}$. Experimental results showed good performance in micro groove cutting in glass, but the size of machined groove was increased about 2~4${\mu}{\textrm}{m}$. therefore, this micro AJM could be effectively applied to the micro machining of semiconductor, electronic devices and LCD parts.

  • PDF

Fabrication of the Acceleration Sensor Body of Glass by Powder Blasting (미립분사가공을 이용한 유리 소재의 가속도 센서 구조물 성형)

  • Park, Dong-Sam;Kang, Dae-Kyu;Kim, Jeong-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.146-153
    • /
    • 2006
  • Acceleration sensors have widely been used in the various fields of industry. In recent years, micromachining accelerometers have been developed and commercialized by the micromachining technique or MEMS technique. Typical structure of such sensors consist of a cantilever beam and a vibrating mass fabricated on Si wafers using etching. This study investigates the feasibility of powder blasting technique for microfabrication of sensor structures made of the pyrex glass alternating the existing Si based acceleration sensor. First, as preliminary experiment, effect of blasting pressure, mass flow rate of abrasive and no. of nozzle scanning on erosion depth of pyrex and soda lime glass is studied. Then the optimal blasting conditions are chosen for pyrex sensor. Structure dimensions of designed glass sensor are 2.9mm and 0.7mm for the cantilever beam length and width and 1.7mm for the side of square mass. Mask material is from aluminium sheet of 0.5mm in thickness. Machining results showed that tolerance errors of basic dimensions of glass sensor ranged from 3um in minimum to 20um in maximum. This results imply the powder blasting can be applied for micromachining of glass acceleration sensors alternating the exiting Si based sensors.

A study on the surface treatment of titanium alloy by micro abrasive blaster (마이크로 연마입자 분사를 이용한 티타늄합금의 표면처리에 관한 연구)

  • Kim, Seong-Won;Wang, Duck-Hyun;Kim, Wonil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.20-27
    • /
    • 2009
  • The characteristics of titanium alloy as a relatively advanced material is low density, avirulent and, superior corrosive resistant, therefore the use of titanium alloy is increasing lately in aerospace and mechanical technologies, precision machinery, electronics industry, petro-chemical industries and biomedical areas. In these days, the titanium alloy product is required various surface qualities of not only smooth surface but also rough surface depending on usages. The purpose of this experimental research is to find the optimum surface roughness of titanium alloy of Ti-6Al-4V, by micro abrasive blasting as depending variable conditions of working pressure, nozzle size, working time, stand of distance and power particle size.

  • PDF

A Study on Performance Improvement of Electrical Discharge Machining for Producing Micro-holes Using a Shot Blasting Surface Treatment (쇼트 블라스팅 표면처리를 통한 미세홀 방전가공 성능향상에 관한 연구)

  • Jang, H.S.;Kim, H.S.;Shin, K.H.
    • Transactions of Materials Processing
    • /
    • v.21 no.5
    • /
    • pp.312-318
    • /
    • 2012
  • With an increasing trend toward miniaturization, electrical discharge machining(EDM) has been receiving a lot of attention as a suitable production technology for micro-parts, since it enables the machining of hard conductive materials with a high degree of repeatability and without alteration to the material. When a micro-hole is fabricated by EDM, however, the diameter of the inlet hole is larger than that of the outlet region due to the additional discharge effect caused by the eroded particles. In this paper, a shot blasting surface treatment, in which an abrasive material is accelerated through a pressurized nozzle and directed at the surface of a part, is suggested as an effective method to reduce the tapered shape of EDM micro-hole. In addition, the influence of process parameters such as spark-on time and electrode diameter on the machining performance was investigated. It is shown quantitatively that the difference in diameter between the inlet and outlet holes decreases with the shot blasting treatment and with decreasing spark-on time.

Design and Performance Test of Wide Blasting Nozzle for Curved Surface Cleaning based on Compressible Flow Analysis (압축성 유동해석에 기초한 곡면 세정을 위한 브라스팅 광폭 노즐의 설계 및 성능시험)

  • Kim, Taehyung;Kwak, Jun Gu;Sohn, Myong Hwan
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.57-64
    • /
    • 2019
  • In this study, the blasting nozzle for surface treatment of the curved surface of parts in power plant industry was designed and the cleaning performance was examined through the compressible flow analysis. At this time, the outlet of the curved nozzle was designed as a curved surface along the surface of the part. After the nozzle was made by 3-D printing, the abrasive was sprayed on the surface of the cylindrical specimen and the cleaning performance test was performed. The effective cleaning area obtained after the analysis was similar to the size and shape of the effective cleaning area obtained after the experiment. From this, the validity and effectiveness of the curved nozzle design was confirmed.

Development of an Occupational Safety and Health (OSH) Guide for Safely Cleaning Contaminated Machinery, Equipment, and Parts Used in the Electronics Manufacturing Process (전자산업 공정에서 사용한 부품, 기계류 세정(cleaning) 작업 안전보건 가이드)

  • Seunghee Lee;Soyeon Kim;Kyung Ehi Zoh;Yeong Woo Hwang;Kyong-Hui Lee;Kwang Jae Chung;Dong-Uk Park
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.4
    • /
    • pp.419-426
    • /
    • 2023
  • Objectives: This study aims to develop an Occupational Safety and Health (OSH) guide for the safe cleaning of contaminated machinery, equipment, and parts used in the electronics manufacturing process. Methods: A literature review, field investigations, and discussions were conducted. An initial draft of an OSH guide was developed and reviewed by experts with significant experience in maintenance work in the electronics manufacturing process in order to refine the guide. Results: Workers involved in cleaning processes with chemicals, solvents, and abrasive blasting can face exposure to a wide range of chemicals, abrasives, and noise. Identifying potential risks associated with each cleaning technique was an essential first step toward enhancing safety measures. The OSH guide comprises approximately eleven to twelve sections spanning 20-25 pages. It includes engineering and administrative protocols systematically organized to address the necessary actions before, during, and after cleaning tasks, depending on the technique. It is recommended that airline respirator masks be used in conjunction with an air purification system to ensure adherence to air quality standard "D" for atmosphere level. The use of an oil-free air compressor is advised, preferably a stationary model that does not rely on fuel sources like diesel. Conclusions: This OSH guide is designed to protect workers involved in maintenance activity in the electronics industry and aligns with global standards, such as those from the International Organization for Standardization (ISO) and Semiconductor Equipment and Material International, ensuring a higher level of safety and compliance.

Surface Smoothing of Blasted Glass Micro-Channels Using Abrasive Waterjet (워터젯을 이용한 블라스팅 유리 마이크로 채널의 표면거칠기 개선)

  • Son, Sung-Gyun;Han, Sol-Yi;Sung, In-Ha;Kim, Wook-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1159-1165
    • /
    • 2013
  • Powder blasting, which is an efficient micromachining method for glass, silicon, and ceramics, has a critical disadvantage in that the surface finish is poor owing to the brittle fracture of materials. Low-pressure waterjet machining can be applied to smoothen the rough surface inside the blasted structure. In this study, the surface roughness and sectional dimension of micro-channels are observed during the repetitive application of a waterjet to blasted micro-channels. The asperities and subsurface cracks created by blasting are removed by waterjet machining. Along with the surface roughness, it is found that the sectional dimension increases and the edges of the finished micro-channel become slightly round. Finally, a microfluidic chip is machined by the blasting-waterjet process and a transparent microfluidic channel is obtained efficiently.

Studies on Drilling and Cutting Characteristics for Granite Rocks Using Waterjets (워터젯을 이용한 화강암 천공과 절삭 특성에 관한 연구)

  • Oh, Tae-Min;Hong, Eun-Soo;Cho, Gye-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1338-1345
    • /
    • 2009
  • Although rock excavation is necessary for the effective utilization of urban space, most conventional rock excavation methods, including the blasting method, cause high noise and vibration. Meanwhile, if a high pressure waterjet system is applied to excavate underground spaces in urban areas, the public grievance can be reduced by low noise and vibration. In this study, an abrasive waterjet system is designed and developed to study the influence of various performance parameters such as jet pressure, nozzle traverse speed, stand-off distance, or abrasive feed rate on waterjet excavation performance in laboratory. Using the developed waterjet system, rock drilling characteristics are identified by measuring drilling depths as a function of the jet exposure time. The drilling depth linearly increases with increasing the jet exposure time(under 60sec). Rock cutting characteristics are also obtained with various jet pressures(1600~3200kg/$cm^2$) and nozzle traverse speeds(1.9~14.1mm/s): The cutting depth is nonlinearly related to the jet pressure and traverse speed. Indeed, the cutting depth increases with an increase in the jet pressure and a decrease in the nozzle traverse speed. This trend can be explained by energy transferring/loss mechanism.

  • PDF

Comparative analysis of cutting performance for basalt and granite according to abrasive waterjet parameters (연마재 워터젯 변수에 따른 현무암 및 화강암 절삭성능 비교분석)

  • Park, Jun-Sik;Cha, Hyun-Jong;Jo, Seon-Ah;Jung, Ju-Hwan;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.395-409
    • /
    • 2022
  • To overcome the limitation of conventional rock excavation methods, the excavation with abrasive waterjet has been actively developed. The abrasive waterjet excavation method has the effect of reducing blasting vibration and enhancing the excavation efficiency by forming a continuous free surface on the rock. However, the waterjet cutting performance varies with rock fracturing characteristics. Thus, it is necessary to analyze the cutting performance for various rocks in order to effectively utilize the waterjet excavation. In this study, cutting experiments with the high pressure waterjet system were performed for basalt and granite specimens. Water pressure, standoff distance, and traverse speed were determined as effective parameters for the abrasive waterjet cutting. The cutting depth and width of basalt specimens were analyzed to compare with granite results. The averaged cutting depth of basalt was shown in 41% deeper than granite; in addition, the averaged cutting width of basalt was formed by 18.5% narrower than granite. The results of this study are expected to be useful basic data for applying rock excavation site with low strength and high porosity such as basalt.

Environmentally-Conscious Cleaning System for End-of-Life CRT (환경친화적 폐브라운관 세정시스템 개발)

  • 송준엽;강재훈;허성필;이화조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.126-134
    • /
    • 2003
  • In this study, we suggest a environmentally-conscious and dry cleaning process mechanism for the more useful recycling of end-of-life CRT, and also develop a prototype cleaning system to verify the faulty of the designed mechanism. This system accommodates the specifications of 14∼32" end-of-life CRT. In experimental result, it is expected that the developed system improve the productivity up to 10% and decrease the loss rate of cleaning glass 3∼4 times than the glass blasting methods.