• Title/Summary/Keyword: ablation modeling

Search Result 28, Processing Time 0.031 seconds

Modeling of Carbon Plume in PLAD Method Assisted by Ar Plasmas (Ar 플라즈마 상태에서 PLAD법에 의한 탄소 입자의 운동 모델링)

  • So, Soon-Youl;Lim, Jang-Seob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.24-31
    • /
    • 2005
  • A plused laser ablation deposition(PLAD) technique has been used for producing fine particle as well as thin film at relatively low substrate temperatures. However, in order to manufacture and evaluate such materials in detail, motions of plume particles generated by laser ablation have to be understood and interactions between the particles by ablation and gas plasma have to be clarified. Therefore this paper was focused on the understanding of plume motion in laser ablation assisted by hi plasmas at 100[mTorr]. One-dimensional hybrid model consisting of fluid and particle models was developed and three kinds of plume particles which are carbon atom(C), $ion(C^+)$ and electron were considered in the calculation of particle method. It was obtained that ablated $C^+$ was electrically captured in Ar plasmas by strong electric field(E). The difference between motions of the ablated electrons and $C^+$ made E strong and the collisional processes active. The energies of plume particles were investigated on a substrate surface. In addition the plume motion in Ar gas was also calculated and discussed.

An unsteady modeling of the Teflon Ionization for a Pulsed Plasma Thruster Performance (펄스형 플라즈마 추력기 성능해석을 위한 테프론의 이온화 비정상 모델링 연구)

  • Cho, Mingyoung;Sung, Hong Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.697-703
    • /
    • 2017
  • A teflon ionization modeling has been conducted to predict the performance of a PPT(Pulsed Plasma Thruster). One dimensional unsteady circuit model and Teflon ablation model were implemented. The Saha equation was adapted to predict the ionization of Carbon and Fluorine gas. The lumped circuit model including a resistance and a inductance model of a plasma was adapted to predict the magnitude of a discharge current. Numerical simulation results had good agreements with pervious research. The degree of current change according to PPT operating voltage was examined.

Elemental analysis of rice using laser-ablation sampling: Determination of rice-polishing degree

  • Yonghoon Lee
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.12-24
    • /
    • 2024
  • In this study, laser-induced breakdown spectroscopy (LIBS) was used to estimate the degree of rice polishing. As-threshed rice seeds were dehusked and polished for different times, and the resulting grains were analyzed using LIBS. Various atomic, ionic, and molecular emissions were identified in the LIBS spectra. Their correlation with the amount of polished-off matter was investigated. Na I and Rb I emission line intensities showed linear sensitivity in the widest range of polished-off-matter amount. Thus, univariate models based on those lines were developed to predict the weight percent of polished-off matter and showed 3-5 % accuracy performances. Partial least squares-regression (PLS-R) was also applied to develop a multivariate model using Si I, Mg I, Ca I, Na I, K I, and Rb I emission lines. It outperformed the univariate models in prediction accuracy (2 %). Our results suggest that LIBS can be a reliable tool for authenticating the degree of rice polishing, which is closed related to nutrition, shelf life, appearance, and commercial value of rice products.

COMPUTATIONAL MODELING AND SIMULATION OF METAL PLASMA GENERATION BETWEEN CYLINDRICAL ELECTRODES USING PULSED POWER (펄스파워를 이용한 실린더형 전극간 금속 플라즈마 생성현상의 전산유동해석)

  • Kim, K.;Kwak, H.S.;Park, J.Y.
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.68-74
    • /
    • 2014
  • This computational study features the transient compressible and inviscid flow analysis on a metallic plasma discharge from the opposing composite electrodes which is subjected to pulsed electric power. The computations have been performed using the flux corrected transport algorithm on the axisymmetric two-dimensional domain of electrode gap and outer space along with the calculation of plasma compositions and thermophysical properties such as plasma electrical conductivity. The mass ablation from aluminum electrode surfaces are modeled with radiative flux from plasma column experiencing intense Joule heating. The computational results shows the highly ionized and highly under-expanded supersonic plasma discharge with strong shock structure of Mach disk and blast wave propagation, which is very similar to muzzle blast or axial plasma jet flows. Also, the geometrical effects of composite electrodes are investigated to compare the amount of mass ablation and penetration depth of plasma discharge.

Prediction Method for Thermal Destruction of Internal Insulator in Solid Rocket Motor (고체추진기관 연소관단열재의 열파괴 예측기법)

  • Ji-Yeul Bae;In Sik Hwang;Yoongoo Kang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • This paper investigated the method to predict a thermal response of internal insulation in a solid rocket motor considering both thermal decomposition and ablation. Changes in properties due to the thermal decomposition, swelling of char layer and movement of decomposition gases inside the material were considered during a modeling. And radiative/convective heat flux from the exhaust gas were applied as boundary conditions, while the chemical ablation of the material surface is modeled with algebraic equations. Test SRM with thermocouples was solved for a validation purpose. The results showed that predicted temperatures have identical trends and values compared to the experimental values. And an error of predicted thermal destruction depth was around 0.1 mm.

Zero-Dimensional Modeling of Plasma Generator in Electrothermal Gun (전열포 플라즈마 생성장치의 영차원 해석모델)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.1-9
    • /
    • 2015
  • This paper introduces a zero-dimensional modeling on the plasma generation in electrothermal gun operation. The plasma generator consists of alumina bore and aluminum electrodes which is electrically powered by outer pulse forming network and, traditionally, its numerical simulations have employed time-dependent one-dimensional governing equations. However, by assuming isothermal approximation along the bore and choked bore exit condition, present analysis simplifies the mass and energy equations into zero-dimensional approximation of plasma conditions coupled with mass ablation model and plasma property evaluation. The numerical results show good agreement with the corresponding one-dimensional computations and thus verify the present modeling approach.

Modeling and Analysis of Thermal Effects of Underwater Laser Drilling for Ceramics (세라믹에 대한 수중 레이저 드릴링의 열영향 모델링 및 해석)

  • Kim, Teak Gu;Kim, Joohan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1265-1271
    • /
    • 2013
  • In this work, modeling and analysis of thermal effects laser drilling under water for ceramics were presented. Laser is a unique tool for machining ceramics due to the characteristic of non-contact material removal. However, ablation by a laser often induces a thermal effect on the material and an increased heat-affected-zone or deposition of debris can be observed on the machined parts. The underwater surrounding improved a heat transfer rate to cooling down the machined part and could prevent any deposition of debris near the machined surfaces and edges. The heat modeling was applied to obtain the temperature distributions as well as temperature gradients between the material and surroundings. The cooling effect of the underwater laser drilling was improved and a more stable temperature distribution was calculated. The actual laser drilling results of ceramic laser drilling were presented to verify the effects of underwater laser drilling.

Scoping Analysis of MCCI (Molten Core Concrete Interaction) at Plant Scale Using CORQUENCH Code (CORQUENCH 코드를 사용한 실규모 원자로의 노심용융물과 콘크리트 상호반응 해석)

  • Kim, Hwan-Yeol;Park, Jong-Hwa
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.268-271
    • /
    • 2008
  • If a reactor vessel is failed to retain a molten corium in a postulated severe accident, the molten corium is released outside the reactor vessel into a reactor cavity. The molten corium would attack the concrete wall and basemat of the reactor cavity, which may lead to inevitable concrete decompositions and possible radiological releases. In the OECD/MCCI project, a series of tests were performed to secure the data for cooling the molten corium spread out at the reactor cavity and for the long-term CCI (Core Concrete Interaction). Also, a MCCI (Molten Core Concrete Interaction) analysis code, CORQUENCH was upgraded at Argonne National Laboratory with embedding the new models developed for the tests. This paper deals with analyses of MCCI at plant scale under the conditions of top flooding using the upgraded CORQUENCH code. The modeling approach is briefly summarized first, followed by presentation of a validation calculation that illustrates the predicative capability of the modeling tool. With this background in place, the model is then used to carry out a parametric set of scoping calculations that define approximate coolability envelopes for the LCS (Limestone Common Sand) concrete that has been evaluated in the OECD/MCCI project.

  • PDF

Background memory-assisted zero-shot video object segmentation for unmanned aerial and ground vehicles

  • Kimin Yun;Hyung-Il Kim;Kangmin Bae;Jinyoung Moon
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.795-810
    • /
    • 2023
  • Unmanned aerial vehicles (UAV) and ground vehicles (UGV) require advanced video analytics for various tasks, such as moving object detection and segmentation; this has led to increasing demands for these methods. We propose a zero-shot video object segmentation method specifically designed for UAV and UGV applications that focuses on the discovery of moving objects in challenging scenarios. This method employs a background memory model that enables training from sparse annotations along the time axis, utilizing temporal modeling of the background to detect moving objects effectively. The proposed method addresses the limitations of the existing state-of-the-art methods for detecting salient objects within images, regardless of their movements. In particular, our method achieved mean J and F values of 82.7 and 81.2 on the DAVIS'16, respectively. We also conducted extensive ablation studies that highlighted the contributions of various input compositions and combinations of datasets used for training. In future developments, we will integrate the proposed method with additional systems, such as tracking and obstacle avoidance functionalities.

An Evaluation on Thermal-Structural Behavior of Nozzle Assembly during Burning Time (연소시간 중 노즐조립체의 열-구조적 거동분석에 관한 연구)

  • Ro, Younghee;Seo, Sanggyu;Jeong, Seongmin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.536-542
    • /
    • 2017
  • A great deal of difficulty is encountered in the thermo-mechanical analyses of nozzle assembly for solid propellant rocket motors. The main issue in this paper is the modeling of the boundary conditions and the connections between the various components-gaps, relative movements of the components, contacts, friction, etc. This paper evaluated the complex phenomena of nozzle assembly during burning time with co-simulation which include fluid, thermal surface reaction/ablation and structural analysis. The validity of this approach was verified by comparison of analysis results with measured strains.

  • PDF