• Title/Summary/Keyword: abiotic stress

Search Result 357, Processing Time 0.028 seconds

Enhancing Production of Terpenoids in Metabolically Engineered Transgenic Spearmint (Mentha spicata L.) by Salt and Fungal Elicitors

  • Choi, Myung Suk;Park, Dong Jin;Song, Hyun Jin;Min, Ji Yun;Kang, Seung Mi;Lee, Chong Kyu;Cho, Kye Man;Karigar, Chandrakant;Kim, Ho Kyoung;Kang, Young Min
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.2
    • /
    • pp.243-252
    • /
    • 2014
  • Forest tree species usually takes for long periods to be harvested and cultivated but spearmints are a good model system for woody plant because of reducing and shortening cultivation time. Spearmints are good model plants (Mentha species) for research about terpenoids production and industrial essential oil manufacture. Isopentenyl pyrophosphate isomerase (Iso) and limonene synthase (Limo) are the key enzymes of terpenoid biosynthesis pathway. Transgenic and wild spearmints (Mentha spicata, MS) were cultured in vitro and assessed for the essential oil contents. The content of essential oil of transgenic spearmint also was enhanced slightly depending on the target terpenoid genes. In an attempt to increase productivity of terpenoids further, salt and fungal elicitation strategy was adopted on transgenic Mentha spicata. The salt (800 mM NaCl) as abiotic and two fungi (Botrytis cinerea and Glomerella cingulata) as biotic were used for elicitors. In the absence of salt stress four terpenoids were detected from the spearmint extracts, all of them being monoterpenes. On the other hand, the transgenic (MSIso) extracts contained eleven terpenoids (10 monoterpenes and 1 phenylpropene) while transgenic (MSLimo) extracts contained seven monoterpenes. After 3 days of fungal infection, the resistance indices further increased to 4.38, 3.89 and 2.04 for wild type, MSIso and MSLimo, respectively. The salt and fungal elicitators proved beneficial towards modifying both the terpenoids profile and improvement in the composition of essential oil. These results have important applications for the large-scale production of essential oils and forest biotechnology with respect to spearmint.

Effects of weather change, human disturbance and interspecific competition on life-history and migration of wintering Red-crowned cranes (기후변화와 인간의 방해 및 종간경쟁이 두루미 월동생태와 이동에 미치는 영향)

  • Hong, Mi-Jin;Lee, Who-Seung;Yoo, Jeong-Chil
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.5
    • /
    • pp.681-692
    • /
    • 2015
  • It is well documented that physiological and nutritional condition of wintering birds is strongly related to migration success to breeding sites, and also breeding success. However, how abiotic factors during winter affect the migration and breeding successes still remains unclear. Thus, this study developed a dynamic-state-dependent model for wintering life-history to identify the potential impact on the life-history, success to breeding site and breeding success of wintering birds, which are related to temperature fluctuation, interspecific competition and human disturbance at the wintering sites. To find the best-fit-model, we referred to the existing research data on wintering ecology of Red-crowned cranes (Grus japonensis) in Cheolwon, Korea, which is well documented as a long-term wintering study. Our model predicted that the higher temperature fluctuation and a higher rate of human disturbance are negatively related to migration success to breeding sites and their fitness, ultimately breeding success via changing of proportion in resource allocation (for e. g., lower energy compensation or higher level of stress accumulation). Particularly, the rate of body mass compensation after arrival at wintering sites may be accelerated when there are less temperature fluctuations and a lower rate of human disturbance. In addition, the rate of interspecific competition sharing the wintering foraging sites is negatively related to the rate of body mass compensation. Consequently, we discussed the conservation strategies of wintering birds based on the outcomes of the model.

Elucidation of the physiological basis related to high photosynthetic capacity of soybean local variety, 'Peking'.

  • Sakoda, Kazuma;Suzuki, Seita;Tanaka, Yu;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.239-239
    • /
    • 2017
  • The enhancement of leaf photosynthetic capacity can have the potential to improve the seed yield of soybean. Key targets for the increase of leaf photosynthetic capacity remains unclear in soybean. Peking, Chinese local variety, has been the useful material for soybean breeding since it shows various resistances against biotic and abiotic stress. Sakoda et al., 2017 reported that Peking had the higher capacity of leaf photosynthesis than Enrei, Japanese elite cultivar. They identified the genetic factors related to high photosynthetic capacity of Peking. The objective of this study is to elucidate the physiological basis underlying high photosynthetic capacity of Peking. Peking and Enrei were cultivated at the experimental field of the Graduate School of Agriculture, Kyoto University, Kyoto, Japan. The sowing date was July 4, 2016. Gas exchange parameters were evaluated at the uppermost fully expanded leaves on 43, 49, and 59 days after planting (DAP) with a portable gas exchange system, LI-6400. The leaf hydraulic conductance, $K_{leaf}$, was determined based on the water potential and transpiration rate of the uppermost fully expanded leaves on 60 DAP. The morphological traits related to leaf photosynthesis were analyzed at the same leaves with the gas exchange measurements. The light-saturated $CO_2$ assimilation rate ($A_{sat}$) of Peking was significantly higher than that of Enrei at 43 and 59 DAP while the stomatal conductance ($g_s$) of Peking was significantly higher at all the measurements (p < 0.05). It suggested that high $A_{sat}$ was mainly attributed to high $g_s$ in Peking. $g_s$ is reported to be affected by the morphological traits and water status inside the leaf, represented by $K_{leaf}$, in crop plants. The tendency of the variation of the stomatal density between two cultivars was not consistent throughout the measurements. On the other hand, $K_{leaf}$ of Peking was 59.0% higher than that of Enrei on 60 DAP. These results imply that high $g_s$ might be attributed to high $K_{leaf}$ in Peking. Further research is needed to reveal the mechanism to archive high $g_s$ on the basis of water physiology in Peking. The knowledge combining the genetic and physiological basis underlying high photosynthetic capacity of Peking can be useful to improve the biomass productivity of soybean.

  • PDF

Antioxidant capacity in seedling of colored-grain wheat under water deficit condition

  • Kim, Dae Yeon;Hong, Min Jeong;Jung, Woo Joo;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.140-140
    • /
    • 2017
  • Nutritious and functional foods from crop have received great attention in recent years. Colored-grain wheat contains high phenolic compound and a large number of flavonoid. The anthocyanin and polyphenolic synthesis and accumulation is generally stimulated in response to biotic or abiotic stresses. Here, we analyzed genome wide transcripts in seedling of colored-grain wheat response to ABA and PEG treatment. About 900 and 1500 transcripts (p-value < 0.05) from ABA and PEG treatment were aligned to IWGSC1+popseq DB which is composed of over 110,000 transcripts including 100,934 coding genes. NR protein sequences of Poaceae from NCBI and protein sequence of transcription factors originated from 83 species in plant transcription factor database v3.0 were used for annotation of putative transcripts. Gene ontology analysis were conducted and KEGG mapping was performed to show expression pattern of biosynthesis genes related in flavonoid, isoflavonoid, flavons and anthocyanin biopathway. DroughtDB (http://pgsb.helmholtz-muenchen.de/droughtdb/) was used for detection of DEGs to explain that physiological and molecular drought avoidance by drought tolerance mechanisms. Drought response pathway, such as ABA signaling, water and ion channels, detoxification signaling, enzymes of osmolyte biosynthesis, phospholipid metabolism, signal transduction, and transcription factors related DEGs were selected to explain response mechanism under water deficit condition. Anthocyanin, phenol compound, and DPPH radical scavenging activity were measured and antioxidant activity enzyme assays were conducted to show biochemical adaptation under water deficit condition. Several MYB and bHLH transcription factors were up-regulated in both ABA and PEG treated condition, which means highly expressed MYB and bHLH transcription factors enhanced the expression of genes related in the biosynthesis pathways of flavonoids, such as anthocyanin and dihydroflavonols in colored wheat seedlings. Subsequently, the accumulation of total anthocyanin and phenol contents were observed in colored wheat seedlings, and antioxidant capacity was promoted by upregulation of genes involved in maintaining redox state and activation of antioxidant scavengers, such as CAT, APX, POD, and SOD in colored wheat seedlings under water deficit condition. This work may provide valuable and basic information for further investigation of the molecular responses of colored-grain wheat to water deficit stress and for further gene-based studies.

  • PDF

Genome-wide survey and expression analysis of F-box genes in wheat

  • Kim, Dae Yeon;Hong, Min Jeong;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.141-141
    • /
    • 2017
  • The ubiquitin-proteasome pathway is the major regulatory mechanism in a number of cellular processes for selective degradation of proteins and involves three steps: (1) ATP dependent activation of ubiquitin by E1 enzyme, (2) transfer of activated ubiquitin to E2 and (3) transfer of ubiquitin to the protein to be degraded by E3 complex. F-box proteins are subunit of SCF complex and involved in specificity for a target substrate to be degraded. F-box proteins regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence. However, little is known about the F-box genes in wheat. The draft genome sequence of wheat (IWGSC Reference Sequence v1.0 assembly) used to analysis a genome-wide survey of the F-box gene family in wheat. The Hidden Markov Model (HMM) profiles of F-box (PF00646), F-box-like (PF12937), F-box-like 2 (PF13013), FBA (PF04300), FBA_1 (PF07734), FBA_2 (PF07735), FBA_3 (PF08268) and FBD (PF08387) domains were downloaded from Pfam database were searched against IWGSC Reference Sequence v1.0 assembly. RNA-seq paired-end libraries from different stages of wheat, such as stages of seedling, tillering, booting, day after flowering (DAF) 1, DAF 10, DAF 20, and DAF 30 were conducted and sequenced by Illumina HiSeq2000 for expression analysis of F-box protein genes. Basic analysis including Hisat, HTseq, DEseq, gene ontology analysis and KEGG mapping were conducted for differentially expressed gene analysis and their annotation mappings of DEGs from various stages. About 950 F-box domain proteins identified by Pfam were mapped to wheat reference genome sequence by blastX (e-value < 0.05). Among them, more than 140 putative F-box protein genes were selected by fold changes cut-offs of > 2, significance p-value < 0.01, and FDR<0.01. Expression profiling of selected F-box protein genes were shown by heatmap analysis, and average linkage and squared Euclidean distance of putative 144 F-box protein genes by expression patterns were calculated for clustering analysis. This work may provide valuable and basic information for further investigation of protein degradation mechanism by ubiquitin proteasome system using F-box proteins during wheat development stages.

  • PDF

Salinity affects microbial community structure in saemangeum reclaimed land

  • Kim, Kiyoon;Samaddar, Sandipan;Ahmed, Shamim;Roy, Choudhury Aritra;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.364-364
    • /
    • 2017
  • Saemangeum reclaimed land is a part of Saemangeum Development Project. Most of the persistent problems of Saemangeum reclaimed land remain to be related to soil salinity. Soil salinity is a major abiotic factor related to microbial community structure and also fungi have been reported to be more sensitive to salinity stress than bacteria. The aim of this study was conducted to investigate the effect of soil salinity levels on the microbial communities in Saemangeum reclaimed land using 454 pyrosequencing analysis. Soil samples was collected from 12 sites of in Saemangeum reclaimed land. For pyrosequencing, 27F/518R (bacteria) and ITS3/ITS4 (fungi) primers were used containing the Roche 454 pyrosequencing adaptor-key-linker (underlined) and unique barcodes (X). Pyrosequencing was performed by Chun's Lab (Seoul, Korea) using the standard shotgun sequencing reagents and a 454 GS FLX Titanium sequencing System (Roche, Inc.). In the soil samples, Proteobacteria (bacteria) and Ascomycota (fungi) shows the highest relative abundance in all the soil sample sites. Proteobacteria, Bacteroidetes, Plantomycetes, Gemmatimonadetes and Parcubacteria were shown to have significantly higher abundance in high salinity level soils than low salinity level soils, while Acidobacteria and Nitrospirae has significantly higher relative abundance in low salinity level soils. The abundance of fungal, Ascomycota has the highest relative abundance in soil samples, followed by Basidiomycota, Chlorophyta, Zygomycota and Chytridiomycota. Basidiomycota, Zygomycota, Glomeromycota and Cerozoa were show significantly higher relative abundance in low salinity level soils. The principal coordinate analysis (PCoA) and correlation analysis shown to salinity-related soil parameters such as ECe, Na+, SAR and EPS were affected to bacterial and fungal community structure. Proteobacteria, Bacteroidetes, Plantomycetes exhibited significantly positive correlation with soil salinity, while Acidobacteria exhibited significantly negative correlation. In the case of fungal community, Basidiomycota and Zygomycota were seen show significantly negative correlation with salinity related soil parameters. These results suggest that provide understanding effect of soil salinity on microbial community structure and correlation of microbial community with soil parameters in Saemangeum reclaimed land.

  • PDF

Expression Study on the Scaffold Gene of CRL4 Complex in Rice (Oryza sativa L.) (벼에 존재하는 CRL4 복합체 scaffold 유전자의 발현 양상에 대한 연구)

  • Bae, Yoowon;Kim, Hani;Kim, Sang-Hoon;Lee, Jae-Hoon
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1132-1139
    • /
    • 2018
  • The stability of diverse cellular proteins in eukaryotes is regulated via ubiquitination. Moreover, E3 ligase plays a crucial role in determining substrate specificity and transfers ubiquitins into the substrates during the ubiquitination process. As a type of multi-subunit E3 ligase, cullin4 (CUL4)-based E3 ligase (CRL4) complex is involved in a variety of cellular processes, such as hormonal and stress responses in plants. In spite of several reports on the versatile roles of CRL4 in various signalings in Arabidopsis, CRL4's function in rice has been poorly known. To learn about CRL4-mediated cellular processes in rice in more detail, OsCUL4 that exhibits the highest homology with Arabidopsis CUL4 was isolated, and its expression patterns in various tissues and in response to plant hormones and abiotic stresses were monitored. Exogenous application of ABA or cytokinin increased the transcript levels of the OsCUL4 gene. Moreover, OsCUL4 was significantly upregulated in response to drought and salt stresses. These findings imply that OsCUL4 may be functionally related to ABA- and/or cytokinin-mediated cellular responses. OsCUL4 directly interacted with OsDDB1, an adaptor protein of CRL4, indicating that OsCUL4 can act as a scaffold protein of CRL4. An expression study on the OsCUL4 gene from this report could be used as a starting point to elucidate cellular responses in which a CRL4-mediated ubiquitination process is involved in rice.

Arabidopsis MAP3K16 and Other Salt-Inducible MAP3Ks Regulate ABA Response Redundantly

  • Choi, Seo-wha;Lee, Seul-bee;Na, Yeon-ju;Jeung, Sun-geum;Kim, Soo Young
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.230-242
    • /
    • 2017
  • In the Arabidopsis genome, approximately 80 MAP3Ks (mitogen-activated protein kinase kinase kinases) have been identified. However, only a few of them have been characterized, and the functions of most MAP3Ks are largely unknown. In this paper, we report the function of MAP3K16 and several other MAP3Ks, MAP3K14/15/17/18, whose expression is salt-inducible. We prepared MAP3K16 overexpression (OX) lines and analyzed their phenotypes. The result showed that the transgenic plants were ABA-insensitive during seed germination and cotyledon greening stage but their root growth was ABA-hypersensitive. The OX lines were more susceptible to water-deficit condition at later growth stage in soil. A MAP3K16 knockout (KO) line, on the other hand, exhibited opposite phenotypes. In similar transgenic analyses, we found that MAP3K14/15/17/18 OX and KO lines displayed similar phenotypes to those of MA3K16, suggesting the functional redundancy among them. MAP3K16 possesses in vitro kinase activity, and we carried out two-hybrid analyses to identify MAP3K16 substrates. Our results indicate that MAP3K16 interacts with MKK3 and the negative regulator of ABA response, ABR1, in yeast. Furthermore, MAP3K16 recombinant protein could phosphorylate MKK3 and ABR1, suggesting that they might be MAP3K16 substrates. Collectively, our results demonstrate that MAP3K16 and MAP3K14/15/17/18 are involved in ABA response, playing negative or positive roles depending on developmental stage and that MAP3K16 may function via MKK3 and ABR1.

'Jungmo2509', the First Rye Cultivar of Self-Fertility in the Korea (국내 최초의 자식성 호밀 품종 '중모2509')

  • Han, Ouk-Kyu;Kim, Jin-Jin;Kim, Dea-Wook;Ku, Ja-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.2
    • /
    • pp.77-83
    • /
    • 2021
  • Rye (Secale cereal L.) is the most tolerant to abiotic stress including low temperature, drought, and unfavorable soil conditions among the winter cereals. Rye is the rapid growth of early spring results from increasing areas for the use of the forage and green manure in the middle part of Korea. "Jungmo2509", a rye cultivar was developed by the National Institute of Crop Science (NICS), RDA in 2014. It was developed from a cross between "Olhomil", a self-compatible cultivar, and "Synthetic II", a self-incompatible line. "Jungmo2509" is an erect plant type and of a middle size, with a green leaf color, a yellowish-white colored culm, and a yellowish brown-colored, small-size grain. The heading date of "Jungmo2509" was April 23, which was 5 days later than that of "Gogu", respectively. But "Jungmo2509" showed greater resistance to lodging compared to that of the check cultivar, with similar to winter hardiness, wet injury, and disease resistance. "Jungmo2509" was a higher to than "Gogu" in terms of protein content (9.4% and 8.0%, respectively), total digestible nutrients (TDN) (55.7% and 55%, respectively). The seed productivity of "Jungmo2509" was approximately 2.08 ton 10a-1, which was 11% lower than that of the check. Almost all rye cultivars are out-crossing due to genes controlling incompatibility, but "Jungmo2509" is higher seed fertility (56%) than that of Gogu (0%). it has self-compatible genes. "Jungmo2509" is erect in plant type and resistance for lodging. Therefore, "Jungmo2509" can produce uniform seeds for processed grains of human consumption and utilize them as parents for breeding the rye hybrids with high forage yields.

Effect of sodium chloride on the growth, amino acid content, and fragrance patterns of Pleurotus ostreatus (염화나트륨 농도가 느타리 자실체의 아미노산과 향기성분에 미치는 영향)

  • Lee, Sang-Chul;Pyeon, Ha-Young;Park, Youn-Jin;Oh, Tae-Seok;Jang, Myoung-Jun
    • Journal of Mushroom
    • /
    • v.19 no.4
    • /
    • pp.310-315
    • /
    • 2021
  • We investigated the effect of sodium chloride-associated abiotic stress on the development of Pleurotus ostreatus. We examined the growth characteristics of fruiting bodies, constituent amino acids, and fragrance pattern to determine the effect of culturing Pleurotus ostreatus on a sawdust substrate supplemented with sodium chloride in a dose-dependent manner. Pleurotus ostreatus fruiting bodies exhibited an increasing tendency towards augmented yields when grown in the presence of 0.5% sodium chloride as compared with that grown in the control group. However, increasing the supplementation of sodium chloride from 1.0 % to 2.0% resulted in significantly decreased yields of Pleurotus ostreatus fruiting bodies in these groups as compared with that in control groups. Further assessment revealed the presence of 14 types of amino acids in the fruiting bodies, including aspartate, threonine, serine, glycine, alanine, methionine, valine, isoleucine, leucine, phenylalanine, tyrosine, lysine, histidine, and arginine, at lower levels in all the sodium chloride-treated groups than in the control group; except for glutamic acid and proline. Similarly, fragrance pattern analysis of the Pleurotus ostreatus fruiting body by chromatography confirmed that the intensity of the substances presumed to be octane compounds, to which the unique flavor of mushrooms is attributed, was lower in all the sodium chloride-treated groups than in the control group.