Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.10.1132

Expression Study on the Scaffold Gene of CRL4 Complex in Rice (Oryza sativa L.)  

Bae, Yoowon (Department of Biology Education, Pusan National University)
Kim, Hani (Department of Biology Education, Pusan National University)
Kim, Sang-Hoon (Department of Biology Education, Pusan National University)
Lee, Jae-Hoon (Department of Biology Education, Pusan National University)
Publication Information
Journal of Life Science / v.28, no.10, 2018 , pp. 1132-1139 More about this Journal
Abstract
The stability of diverse cellular proteins in eukaryotes is regulated via ubiquitination. Moreover, E3 ligase plays a crucial role in determining substrate specificity and transfers ubiquitins into the substrates during the ubiquitination process. As a type of multi-subunit E3 ligase, cullin4 (CUL4)-based E3 ligase (CRL4) complex is involved in a variety of cellular processes, such as hormonal and stress responses in plants. In spite of several reports on the versatile roles of CRL4 in various signalings in Arabidopsis, CRL4's function in rice has been poorly known. To learn about CRL4-mediated cellular processes in rice in more detail, OsCUL4 that exhibits the highest homology with Arabidopsis CUL4 was isolated, and its expression patterns in various tissues and in response to plant hormones and abiotic stresses were monitored. Exogenous application of ABA or cytokinin increased the transcript levels of the OsCUL4 gene. Moreover, OsCUL4 was significantly upregulated in response to drought and salt stresses. These findings imply that OsCUL4 may be functionally related to ABA- and/or cytokinin-mediated cellular responses. OsCUL4 directly interacted with OsDDB1, an adaptor protein of CRL4, indicating that OsCUL4 can act as a scaffold protein of CRL4. An expression study on the OsCUL4 gene from this report could be used as a starting point to elucidate cellular responses in which a CRL4-mediated ubiquitination process is involved in rice.
Keywords
CRL4; cullin4; hormones; rice; stresses;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hotton, S. K. and Callis, J. 2008. Regulation of cullin RING ligases. Annu. Rev. Plant Biol. 59, 467-489.   DOI
2 Hua, Z. and Vierstra, R. D. 2011. The cullin-RING ubiquitin-protein ligases. Annu. Rev. Plant Biol. 62, 299-334.   DOI
3 Irigoyen, M. L., Iniesto, E., Rodriguez, L., Puga, M. I., Yanagawa, Y., Pick, E., Strickland, E., Paz-Ares, J., Wei, N., De Jaeger, G., Rodriguez, P. L., Deng, X. W. and Rubio, V. 2014. Targeted degradation of abscisic acid receptors is mediated by the ubiquitin ligase substrate adaptor DDA1 in Arabidopsis. Plant Cell 26, 712-728.   DOI
4 Kim, S. H., Kim, H., Chung, S. and Lee, J. H. 2017. DHU1 negatively regulates UV-B signaling via its direct interaction with COP1 and RUP1. Biochem. Biophys. Res. Commun. 491, 285-290.   DOI
5 Kim, S. H., Kim, H., Seo, K. I., Kim, S. H., Chung, S., Huang, X., Yang, P., Deng, X. W. and Lee, J. H. 2014. DWD HYPERSENSITIVE TO UV-B 1 is negatively involved in UV-B mediated cellular responses in Arabidopsis. Plant Mol. Biol. 86, 571-583.   DOI
6 Kim, S. H., Woo, O. G., Jang, H. S. and Lee, J. H. 2018. Characterization and comparative expression analysis of CUL1 genes in rice. Genes Genom. 40, 233-241.   DOI
7 Lee, J. H. and Kim, W. T. 2011. Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis. Mol. Cells 31, 201-208.   DOI
8 Iconomou, M. and Saunders, D. N. 2016. Systematic approaches to identify E3 ligase substrates. Biochem. J. 473, 4083-4101.
9 Lee, J. H., Terzaghi, W., Gusmaroli, G., Charron, J. B., Yoon, H. J., Chen, H., He, Y. J., Xiong, Y. and Deng, X. W. 2008. Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases. Plant Cell 20, 152-167.   DOI
10 Lee, J. H., Terzaghi, W. and Deng, X. W. 2011. DWA3, an Arabidopsis DWD protein, acts as a negative regulator in ABA signal transduction. Plant Sci. 180, 352-357.   DOI
11 Onate-Sanchez, L. and Vicente-Carbajosa, J. 2008. DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Res. Notes 1, 93.
12 Lee, J. H., Yoon, H. J., Terzaghi, W., Martinez, C., Dai, M., Li, J., Byun, M. O. and Deng, X. W. 2010. DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell 22, 1716-1732.   DOI
13 Lee, J. H. 2016. Structure and biological function of plant CRL4, and its involvement in plant cellular events. J. Life Sci. 26, 364-375.   DOI
14 Li, D., Zhang, L., Li, X., Kong, X., Wang, X., Li, Y., Liu, Z., Wang, J., Li, X. and Yang, Y. 2018. AtRAE1 is involved in degradation of ABA receptor RCAR1 and negatively regulates ABA signalling in Arabidopsis. Plant Cell Environ. 41, 231-244.   DOI
15 Petroski, M. D. and Deshaies, R. J. 2005. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6, 9-20.
16 Vierstra, R. D. 2009. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat. Rev. Mol. Cell Biol. 10, 385-397.   DOI
17 Rice, P., Longden, I. and Bleasby, A. 2000. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16, 276-277.   DOI
18 Seo, K. I., Lee, J. H., Nezames, C. D., Zhong, S., Song, E., Byun, M. O. and Deng, X. W. 2014. ABD1 is an Arabidopsis DCAF substrate receptor for CUL4-DDB1-based E3 ligases that acts as a negative regulator of abscisic acid signaling. Plant Cell 26, 695-711.   DOI
19 Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729.
20 Wang, S., Liu, J., Feng, Y., Niu, X., Giovannoni, J. and Liu, Y. 2008. Altered plastid levels and potential for improved fruit nutrient content by downregulation of the tomato DDB1-interacting protein CUL4. Plant J. 55, 89-103.
21 Xu, G., Ma, H., Nei, M. and Kong, H. 2009. Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification. Proc. Natl. Acad. Sci. USA. 106, 835-840.   DOI
22 Zang, G., Zou, H., Zhang, Y., Xiang, Z., Huang, J., Luo, L., Wang, C., Lei, K., Li, X., Song, D., Din, A. U. and Wang, G. 2016. The De-Etiolated 1 homolog of Arabidopsis modulates the ABA signaling pathway and ABA biosynthesis in rice. Plant Physiol. 171, 1259-1276.
23 Zhang, C., Guo, H., Zhang, J., Guo, G., Schumaker, K. S. and Guo, Y. 2010. Arabidopsis cockayne syndrome A-like proteins 1A and 1B form a complex with CULLIN4 and damage DNA binding protein 1A and regulate the response to UV irradiation. Plant Cell 22, 2353-2369.
24 Gagne, J. M., Downes, B. P., Shiu, S. H., Durski, A. M. and Vierstra, R. D. 2002. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc. Natl. Acad. Sci. USA. 99, 11519-11524.   DOI
25 Bernhardt, A., Lechner, E., Hano, P., Schade, V., Dieterle, M., Anders, M., Dubin, M. J., Benvenuto, G., Bowler, C., Genschik, P. and Hellmann, H. 2006. CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in Arabidopsis thaliana. Plant J. 47, 591-603.   DOI
26 Biedermann, S. and Hellmann, H. 2010. The DDB1a interacting proteins ATCSA-1 and DDB2 are critical factors for UV-B tolerance and genomic integrity in Arabidopsis thaliana. Plant J. 62, 404-415.   DOI
27 Zhang, Y., Feng, S., Chen, F., Chen, H., Wang, J., McCall, C., Xiong, Y. and Deng, X. W. 2008. Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes. Plant Cell 20, 1437-1455.   DOI
28 Callis, J. 2014. The ubiquitination machinery of the ubiquitin system. Arabidopsis Book 12, e0174.
29 Chen, H., Shen, Y., Tang, X., Yu, L., Wang, J., Guo, L., Zhang, Y., Zhang, H., Feng, S., Strickland, E., Zheng, N. and Deng, X. W. 2006. Arabidopsis CULLIN4 forms an E3 ubiquitin ligase with RBX1 and the CDD complex in mediating light control of development. Plant Cell 18, 1991-2004.   DOI
30 Dutilleul, C., Ribeiro, I., Blanc, N., Nezames, C. D., Deng, X. W., Zglobicki, P., Palacio Barrera, A. M., Atehortùa, L., Courtois, M., Labas, V., Giglioli-Guivarc'h, N. and Ducos, E. 2016. ASG2 is a farnesylated DWD protein that acts as ABA negative regulator in Arabidopsis. Plant Cell Environ. 39, 185-198.
31 Gingerich, D. J., Gagne, J. M., Salter, D. W., Hellmann, H., Estelle, M., Ma, L. and Vierstra, R. D. 2005. Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis. J. Biol. Chem. 280, 18810-18821.
32 Gruber, H., Heijde, M., Heller, W., Albert, A., Seidlitz, H. K. and Ulm, R. 2010. Negative feedback regulation of UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. Proc. Natl. Acad. Sci. USA. 107, 20132-20137.
33 Heijde, M. and Ulm, R. 2013. Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state. Proc. Natl. Acad. Sci. USA. 110, 1113-1118.   DOI