• Title/Summary/Keyword: abelian varieties

Search Result 15, Processing Time 0.017 seconds

TATE-SHAFAREVICH GROUPS OVER THE COMMUTATIVE DIAGRAM OF 8 ABELIAN VARIETIES

  • Hoseog Yu
    • Honam Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.410-417
    • /
    • 2023
  • Suppose that there are 8 abelian varieties defined over a number field K which satisfy a commutative diagram. We show that if we know that three out of four short exact sequences satisfy the rate formula of Tate-Shafarevich groups, then the unknown short exact sequence satisfies the rate formula of Tate-Shafarevich groups, too.

REDUCTION OF ABELIAN VARIETIES AND CURVES

  • Moshe Jarden;Aharon Razon
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.515-545
    • /
    • 2024
  • Consider a Noetherian domain R0 with quotient field K0. Let K be a finitely generated regular transcendental field extension of K0. We construct a Noetherian domain R with Quot(R) = K that contains R0 and embed Spec(R0) into Spec(R). Then, we prove that key properties of abelian varieties and smooth geometrically integral projective curves over K are preserved under reduction modulo p for "almost all" p ∈ Spec(R0).

ON THE RATIO OF TATE-SHAFAREVICH GROUPS OVER CYCLIC EXTENSIONS OF ORDER p2

  • Yu, Hoseog
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.417-424
    • /
    • 2014
  • Let A be an abelian variety defined over a number field K and p be a prime. Define ${\varphi}_i=(x^{p^i}-1)/(x^{p^{i-1}}-1)$. Let $A_{{\varphi}i}$ be the abelian variety defined over K associated to the polynomial ${\varphi}i$ and let Ш($A_{{\varphi}i}$) denote the Tate-Shafarevich groups of $A_{{\varphi}i}$ over K. In this paper assuming Ш(A/F) is finite, we compute [Ш($A_{{\varphi}1}$)][Ш($A_{{\varphi}2}$)]/[Ш($A_{{\varphi}1{\varphi}2}$)] in terms of K-rational points of $A_{{\varphi}i}$, $A_{{\varphi}1{\varphi}2}$ and their dual varieties, where [X] is the order of a finite abelian group X.

COVERS OF ALGEBRAIC VARIETIES VI. ANGLO-AMERICAN COVERS AND (1,3)-POLARIZED ABELIAN SURFACES

  • Casnati, Gianfranco
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.1-16
    • /
    • 2012
  • In the present paper we describe a class of Gorenstein, finite and at morphism ${\varrho}$: $X{\rightarrow}Y$ of degree 6 of algebraic varieties, called Anglo-American covers. We prove a general Bertini theorem for them and we give some evidence that the cover ${\varrho}$: $A{\rightarrow}\mathbb{P}_k^2$ associated general (1, 3)-polarized abelian surface is Anglo-American.

GALOIS COVERINGS AND JACOBI VARIETIES OF COMPACT RIEMANN SURFACES

  • Namba, Makoto
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.263-286
    • /
    • 2016
  • We discuss relations between Galois coverings of compact Riemann surfaces and their Jacobi varieties. We prove a theorem of a kind of Galois correspondence for Abelian subvarieties of Jacobi varieties. We also prove a theorem on the sets of points in Jacobi varieties fixed by Galois group actions.

A generating method of CM parameters of pairing-friendly abelian surfaces using Brezing-Weng family (Brezing-Weng 다항식족을 이용한 페어링 친화 아벨 곡면의 CM 파라미터 생성법)

  • Yoon, Kisoon;Park, Young-Ho;Chang, Nam Su
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.3
    • /
    • pp.567-571
    • /
    • 2015
  • Brezing and Weng proposed a method to generate CM parameters of pairing-friendly elliptic curves using polynomial representations of a number field, and Freeman generalized the method for the case of abelian varieties. In this paper we derive explicit formulae to find a family of polynomials used in Brezing-Weng method especially in the case of abelian surfaces, and present some examples generated by the proposed method.

ON THE TATE-SHAFAREVICH GROUPS OVER DEGREE 3 NON-GALOIS EXTENSIONS

  • Yu, Hoseog
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.85-93
    • /
    • 2016
  • Let A be an abelian variety defined over a number field K and let L be a degree 3 non-Galois extension of K. Let III(A/K) and III(A/L) denote, respectively, the Tate-Shafarevich groups of A over K and over L. Assuming that III(A/L) is finite, we compute [III(A/K)][III($A_{\varphi}/K$)]/[III(A/L)], where [X] is the order of a finite abelian group X.

ON THE TATE-SHAFAREVICH GROUPS OVER BIQUADRATIC EXTENSIONS

  • Yu, Hoseog
    • Honam Mathematical Journal
    • /
    • v.37 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Let A be an abelian variety defined over a number field K. Let L be a biquadratic extension of K with Galois group G and let III (A/K) and III(A/L) denote, respectively, the Tate-Shafarevich groups of A over K and over L. Assuming III(A/L) is finite, we compute [III(A/K)]/[III(A/L)] where [X] is the order of a finite abelian group X.

TATE-SHAFAREVICH GROUPS AND SCHANUEL'S LEMMA

  • Yu, Hoseog
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.137-141
    • /
    • 2017
  • Let A be an abelian variety defined over a number field K and let L be a finite Galois extension of K. Let III(A/K) and III(A/L) denote, respectively, the Tate-Shafarevich groups of A over K and over L. Let $Res_{L/K}(A)$ be the restriction of scalars of A from L to K and let B be an abelian subvariety of $Res_{L/K}(A)$ defined over K. Assuming that III(A/L) is finite, we compute [III(B/K)][III(C/K)]/[III(A/L)], where [X] is the order of a finite abelian group X and the abelian variety C is defined by the exact sequence defined over K $0{\longrightarrow}B{\longrightarrow}Res_{L/K}(A){\longrightarrow}C{\longrightarrow}0$.