• Title/Summary/Keyword: a-SiGe:H

Search Result 83, Processing Time 0.028 seconds

Spectroscopic Ellipsometry of Si/graded-$Si_{1-x}Ge_x$/Si Heterostructure Films Grown by Reduced Pressure Chemical Vapor Deposition

  • Seo, J.J.;Choi, S.S.;Yang, H.D.;Kim, J.Y.;Yang, J.W.;Han, T.H.;Cho, D.H.;Shim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.190-191
    • /
    • 2006
  • We have investigated optical properties of Si/graded-$Si_{1-x}Ge_x$/Si heterostructures grown by reduced pressure chemical vapor deposition. Compared to standard condition using Si(100) substrate and growth temperature of $650^{\circ}C$, Si(111) resulted in low growth rate and high Ge mole fraction. Also samples grown at higher temperatures exhibited increased growth rate and reduced Ge mole fraction. The features regarding both substrate temperature and crystal orientation, representing high incorporation of silicon supplied from gas stream played as a key parameter, illustrate that reaction control were prevailed in this process growth condition. Using secondary ion mass spectroscopy and spectroscopic ellipsometry, microscopic changes in atomic components could be analyzed for Si/graded-$Si_{1-x}Ge_x$/Si heterostructures.

  • PDF

Integrated IR Photo Sensor for Display Application (디스플레이 패널에 집적이 가능한 적외선 포토센서)

  • Jeon, Ho-Sik;Heo, Yang-Wook;Lee, Jae-Pyo;Han, Sang-Youn;Bae, Byung-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1164-1169
    • /
    • 2012
  • This paper presents a study of an integrated infrared (IR) photo sensor for display application. We fabricated hydrogenated amorphous silicon thin film transistor (a-Si:H TFT) and hydrogenated amorphous silicon germanium thin film transistor (a-SiGe:H TFT) which were bottom gate structure. We investigated the dependence of a-SiGe:H TFT characteristics on incident wavelengths. We proposed photo sensor which responded to wavelengths of IR region. Proposed pixel circuit of photo sensor was consists of switch TFT and photo TFT, and one capacitor. We developed integrated photo sensor circuit and investigated the performance of the proposed sensor circuit according to the input wavelengths. The developed photo sensor circuit with a-SiGe:H TFT was suitable for IR.

Low-Temperature Si and SiGe Epitaxial Growth by Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition (UHV-ECRCVD)

  • Hwang, Ki-Hyun;Joo, Sung-Jae;Park, Jin-Won;Euijoon Yoon;Hwang, Seok-Hee;Whang, Ki-Woong;Park, Young-June
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.422-448
    • /
    • 1996
  • Low-temperature epitaxial growth of Si and SiGe layers of Si is one of the important processes for the fabrication of the high-speed Si-based heterostructure devices such as heterojunction bipolar transistors. Low-temperature growth ensures the abrupt compositional and doping concentration profiles for future novel devices. Especially in SiGe epitaxy, low-temperature growth is a prerequisite for two-dimensional growth mode for the growth of thin, uniform layers. UHV-ECRCVD is a new growth technique for Si and SiGe epilayers and it is possible to grow epilayers at even lower temperatures than conventional CVD's. SiH and GeH and dopant gases are dissociated by an ECR plasma in an ultrahigh vacuum growth chamber. In situ hydrogen plasma cleaning of the Si native oxide before the epitaxial growth is successfully developed in UHV-ECRCVD. Structural quality of the epilayers are examined by reflection high energy electron diffraction, transmission electron microscopy, Nomarski microscope and atomic force microscope. Device-quality Si and SiGe epilayers are successfully grown at temperatures lower than 600℃ after proper optimization of process parameters such as temperature, total pressure, partial pressures of input gases, plasma power, and substrate dc bias. Dopant incorporation and activation for B in Si and SiGe are studied by secondary ion mass spectrometry and spreading resistance profilometry. Silicon p-n homojunction diodes are fabricated from in situ doped Si layers. I-V characteristics of the diodes shows that the ideality factor is 1.2, implying that the low-temperature silicon epilayers grown by UHV-ECRCVD is truly of device-quality.

  • PDF

Thin Film Si-Ge/c-Si Tandem Junction Solar Cells with Optimum Upper Sub- Cell Structure

  • Park, Jinjoo
    • Current Photovoltaic Research
    • /
    • v.8 no.3
    • /
    • pp.94-101
    • /
    • 2020
  • This study was trying to focus on achieving high efficiency of multi junction solar cell with thin film silicon solar cells. The proposed thin film Si-Ge/c-Si tandem junction solar cell concept with a combination of low-cost thin-film silicon solar cell technology and high-efficiency c-Si cells in a monolithically stacked configuration. The tandem junction solar cells using amorphous silicon germanium (a-SiGe:H) as an absorption layer of upper sub-cell were simulated through ASA (Advanced Semiconductor Analysis) simulator for acquiring the optimum structure. Graded Ge composition - effect of Eg profiling and inserted buffer layer between absorption layer and doped layer showed the improved current density (Jsc) and conversion efficiency (η). 13.11% conversion efficiency of the tandem junction solar cell was observed, which is a result of showing the possibility of thin film Si-Ge/c-Si tandem junction solar cell.

Metal Organic Chemical Vapor Deposition Characteristics of Germanium Precursors (Metal Organic Chemical Vapor Deposition법을 이용한 Germanium 전구체의 증착 특성 연구)

  • Kim, Sun-Hee;Kim, Bong-June;Kim, Do-Heyoung;Lee, June-Key
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.302-306
    • /
    • 2008
  • Polycrystalline germanium (Ge) thin films were grown by metal organic chemical vapor deposition (MOCVD) using tetra-allyl germanium [$Ge(allyl)_4$], and germane ($GeH_4$) as precursors. Ge thin films were grown on a $TiN(50nm)/SiO_2/Si$ substrate by varying the growth conditions of the reactive gas ($H_2$), temperature ($300-700^{\circ}C$) and pressure (1-760Torr). $H_2$ gas helps to remove carbon from Ge film for a $Ge(allyl)_4$ precursor but not for a $GeH_4$ precursor. $Ge(allyl)_4$ exhibits island growth (VW mode) characteristics under conditions of 760Torr at $400-700^{\circ}C$, whereas $GeH_4$ shows a layer growth pattern (FM mode) under conditions of 5Torr at $400-700^{\circ}C$. The activation energies of the two precursors under optimized deposition conditions were 13.4 KJ/mol and 31.0 KJ/mol, respectively.

Co-sputtering of Microcrystalline SiGe Thin Films for Optoelectronic Devices

  • Kim, Seon-Jo;Kim, Hyeong-Jun;Kim, Do-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.64.2-64.2
    • /
    • 2011
  • Recently, Silicon Germanium (SiGe) alloys have been received considerable attention for their great potentials in advanced electronic and optoelectronic devices. Especially, microcrystalline SiGe is a good channel material for thin film transistor due to its advantages such as narrow and variable band gap and process compatibility with Si based integrated circuits. In this work, microcrystalline silicon-germanium films (${\mu}c$-SiGe) were deposited by DC/RF magnetron co-sputtering method using Si and Ge target on Corning glass substrates. The film composition was controlled by changing DC and RF powers applied to each target. The substrate temperatures were changed from $100^{\circ}C$ to $450^{\circ}C$. The microstructure of the thin films was analyzed by x-ray diffraction (XRD) and Raman spectroscopy. The analysis results showed that the crystallinity of the films enhances with increasing Ge mole fraction. Also, crystallization temperature was reduced to $300^{\circ}C$ with $H_2$ dilution. Hall measurements indicated that the electrical properties were improved by Ge alloying.

  • PDF

Low-Temperature Selective Epitaxial Growth of SiGe using a Cyclic Process of Deposition-and-Etching (증착과 식각의 연속 공정을 이용한 저온 선택적 실리콘-게르마늄 에피 성장)

  • Kim, Sang-Hoon;Shim, Kyu-Hwan;Kang, Jin-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.151-154
    • /
    • 2002
  • AP/RPCVD를 이용하여 $650^{\circ}C$의 저온에서 실리콘-게르마늄의 선택적 단결정 성장 (Selective Epitaxy Growth: SEG) 을 수행하였다. 본 실험에서는 $SiH_4$, $GeH_4$ 그리고 HCl 가스를 사용하여 잠입시간 동안 실리콘-게르마늄막을 성장시키고 연속해서 HCI 가스만을 주입하여 산화막 위에 형성되어진 작은 결정입자들을 식각하는 공정을 반복적으로 수행하였다. HCl 의 식각에 의해 한 주기의 잠입기 후에도 다시 잠입기가 존재함을 확인하였고, 이 성장법을 통하여 한 주기의 잠업시간 동안 증착할 수 있는 두께 이상으로 실리콘-게르마늄막의 선택적 성장이 가능하였다. 이는 저온 선택적 실리콘-게르마늄 성장 시 RPCVD에서 보이는 낮은 선택성과 $SiH_4$의 짧은 장입시간으로 인해 원하는 두께까지 확보하기 힘든 단점을 극복한 것이다. 선택성을 향상시키기 위해 실리콘-게르마늄 증착중 주입된 HCI의 유량에 따라 잠입시간과 증착속도에 영향을 주었으며, 연속공정을 위한 식각공정은 20sccm의 HCI을 20초간 주입하여 선택성을 유지하였다. 또한 보론 불순물의 첨가가 선택적으로 성장되는 박막의 결정성에 미치는 영향도 분석되었다.

  • PDF

Synthesis of Uniformly Doped Ge Nanowires with Carbon Sheath

  • Kim, Tae-Heon;;Choe, Sun-Hyeong;Seo, Yeong-Min;Lee, Jong-Cheol;Hwang, Dong-Hun;Kim, Dae-Won;Choe, Yun-Jeong;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.289-289
    • /
    • 2013
  • While there are plenty of studies on synthesizing semiconducting germanium nanowires (Ge NWs) by vapor-liquid-solid (VLS) process, it is difficult to inject dopants into them with uniform dopants distribution due to vapor-solid (VS) deposition. In particular, as precursors and dopants such as germane ($GeH_4$), phosphine ($PH_3$) or diborane ($B_2H_6$) incorporate through sidewall of nanowire, it is hard to obtain the structural and electrical uniformity of Ge NWs. Moreover, the drastic tapered structure of Ge NWs is observed when it is synthesized at high temperature over $400^{\circ}C$ because of excessive VS deposition. In 2006, Emanuel Tutuc et al. demonstrated Ge NW pn junction using p-type shell as depleted layer. However, it could not be prevented from undesirable VS deposition and it still kept the tapered structures of Ge NWs as a result. Herein, we adopt $C_2H_2$ gas in order to passivate Ge NWs with carbon sheath, which makes the entire Ge NWs uniform at even higher temperature over $450^{\circ}C$. We can also synthesize non-tapered and uniformly doped Ge NWs, restricting incorporation of excess germanium on the surface. The Ge NWs with carbon sheath are grown via VLS process on a $Si/SiO_2$ substrate coated 2 nm Au film. Thin Au film is thermally evaporated on a $Si/SiO_2$ substrate. The NW is grown flowing $GeH_4$, HCl, $C_2H_2$ and PH3 for n-type, $B_2H_6$ for p-type at a total pressure of 15 Torr and temperatures of $480{\sim}500^{\circ}C$. Scanning electron microscopy (SEM) reveals clear surface of the Ge NWs synthesized at $500^{\circ}C$. Raman spectroscopy peaked at about ~300 $cm^{-1}$ indicates it is comprised of single crystalline germanium in the core of Ge NWs and it is proved to be covered by thin amorphous carbon by two peaks of 1330 $cm^{-1}$ (D-band) and 1590 $cm^{-1}$ (G-band). Furthermore, the electrical performances of Ge NWs doped with boron and phosphorus are measured by field effect transistor (FET) and they shows typical curves of p-type and n-type FET. It is expected to have general potentials for development of logic devices and solar cells using p-type and n-type Ge NWs with carbon sheath.

  • PDF

Low temperature electron mobility property in Si/$Si_{1-x}Ge_{x}$ modulation doped quantum well structure with thermally grown oxide

  • Kim, Jin-Young
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.1
    • /
    • pp.11-17
    • /
    • 2000
  • The low temperature electron mobilities were investigated in Si/$Si_{1-x}Ge_{x}$ modulation Doped (MOD) quantum well structure with thermally grown oxide. N-type Si/$Si_{1-x}Ge_{x}$ structures were fabricated by a gas source MBE. Thermal oxidation was carried out in a dry $O_2$ atmosphere at $700^{\circ}C$ for 7 hours. Electron mobilities were measured by a Hall effect and a magnetoresistant effect at low temperatures down to 0.4 K. Pronounced Shubnikov-de Haas (SdH) oscillations were observed at a low temperature showing two dimensional electron gases (2 DEG) in a tensile strained Si quantum well. The electron sheet density ($n_{s}$) of 1.5${\times}$$10^{12}$[$cm^{-2}$] and corresponding electron mobility of 14200 [$cm^2$$V^{-1}$$s^{-1}$] were obtained at low temperature of 0.4 K from Si/$Si_{1-x}Ge_{x}$ MOD quantum well structure with thermally grown oxide.

  • PDF

Ge thin layer transfer on Si substrate for the photovoltaic applications (Si 기판에서의 광소자 응용을 위한 Ge 박막의 Transfer 기술개발)

  • 안창근;조원주;임기주;오지훈;양종헌;백인복;이성재
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.743-746
    • /
    • 2003
  • We have successfully used hydrophobic direct-wafer bonding, along with H-induced layer splitting of Ge, to transfer 700nm think, single-crystal Ge films to Si substrates. Optical and electrical properties have been also observed on these samples. Triple-junction solar cell structures gown on these Ge/Si heterostructure templates show comparable photoluminescence intensity and minority carrier lifetime to a control structure grown on bulk Ge. When heavily doped p$^{+}$Ge/p$^{+}$Si wafer bonded heterostructures were bonded, ohmic interfacial properties with less than 0.3Ω$\textrm{cm}^2$ specific resistance were observed indicating low loss thermal emission and tunneling processes over and through the potential barrier. Current-voltage (I-V) characteristics in p$^{+}$Ge/pSi structures show rectifying properties for room temperature bonded structures. After annealing at 40$0^{\circ}C$, the potential barrier was reduced and the barrier height no longer blocks current flow under bias. From these observations, interfacial atomic bonding structures of hydrophobically wafer bonded Ge/Si heterostructures are suggested.ested.

  • PDF