• Title/Summary/Keyword: a-SiC:H

Search Result 2,183, Processing Time 0.038 seconds

Cu/Si/Cu Ohmic contacts to n-type 4H-SiC (n형 4H-SiC의 Cu/Si/Cu 오옴성 접합)

  • 정경화;조남인;김민철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.73-77
    • /
    • 2002
  • Characteristics of Cu/Si/Cu ohmic contacts to n-type 4H-SiC were investigated systematically. The ohmic contacts were formed by rf sputtering of multi layer Cu/Si/Cu sputtered sequentially. The annealings were peformed With 2-Step using RTP in vacuum ambient. The specific contact resistivity($\rho$c), sheet resistance(Rs), contact resistance(Rc), transfer length(L$_{T}$) were calculated from resistance(R$_{T}$) versus contact spacing(d) measurements obtained from TLM(transmission line method) structure. Best results were obtained for a sample annealed at vacuum as $\rho$c = 1.0x10$^{-6}$ $\Omega$$\textrm{cm}^2$, Rc = 2$\Omega$ and L$_{T}$ = 1${\mu}{\textrm}{m}$. The physical properties of contacts were examined using XRO and AES. The results showed that copper silicide was formed on SiC and Cu was migrated into SiC.o SiC.

  • PDF

Mechanistic Aspects in the Grignard Coupling Reaction of Bis(chloromethyl)dimethylsilane with Trimethylchlorosilane

  • 조연석;유복렬;안삼영;정일남
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.4
    • /
    • pp.422-426
    • /
    • 1999
  • The Grignard reactions of bis(chloromethyl)dimethylsilane (1) with trimethylchlorosilane (2) in THF give both the intermolecular C-Si coupling and intramolecular C-C coupling products. At beginning stage, 1 reacts with Mg to give the mono-Grignard reagent ClCH2Me2SiCH2MgCl (1) which undergoes the C-Si coupling reaction to give MC2Si(CH2SiMe3)2 3, or C-C coupling to a mixture of formula Me3SiCH2(SiMe2CH2CH2)nR1 (n = 1, 2, 3, ..; 4a, R1I = H: 4b, R1 = SiMe3). In the reaction, two reaction pathways are involved: a) Ⅰ reacts with 2 to give Me3SiCH2SiMe2CH2Cl 6 which further reacts with Mg to afford a Me2SiCH2Mel-SiCH2MgCl (Ⅱ) or b) I cyclizes intramolecularly to a silacyclopropane intermediate A, which undergoes a ring-opening polymerization by the nucleophilic attack of the intermediates I or Ⅱ, followed by the termination reaction with H2O and 2, to give 4a and 4b, respectively. As the mole ratio of 2/1 increased from 2 to 16 folds, the formation of product 3 increased from 16% to 47% while the formation of polymeric products 4 was reduced from 60% to 40%. The intermolecular C-Si coupling reaction of the pathway a becomes more favorable than the intramolecular C-C coupling reaction of the pathways b at the higher mole ratio of 2/1.

A Study on the c-axis preferred orientation of CoCr(-Ta)/Si doublelayer (CoCr(-Ta)/Si 이층막의 c-축 우선 배향성에 관한 연구)

  • Kim, Y.J.;Park, W.H.;Kwon, S.K.;Son, I.H.;Choi, H.W.;Kim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1475-1477
    • /
    • 2001
  • In odor to set high saturation magnetization and coercivity, it had need to orient axis of easy magnetization of CoCr-based thin film perpendicular direction(c-axis) to the substrate plane. It was known that crystalline orientation of CoCr-based thin film was improved by introducing underlayer like Ti, Ge. We prepared singlelayer and double layer with Si underlayer by Facing Targets Sputtering System. As a result, intensity and c-axis dispersion angle ${\Delta}{\theta}_{50}$ of singlelayer were improved with increasing film thickness. Also, it was found that CoCr/Si and CoCrTa/Si double layer showed good c-axis dispersion angle due to introducing Si.

  • PDF

Characterization of Non-polar 6H-SiC Substrates for Optoelectronic Device Applications (광전소자 응용을 위한 무극성 6H-SiC 기판의 특성)

  • Yeo, Im-Gyu;Lee, Tae-Woo;Choi, Jung-Woo;Seo, Jung-Doo;Ku, Kap-Ryeol;Lee, Won-Jae;Shin, Byung-Chul;Kim, Young-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.390-396
    • /
    • 2009
  • The present research was focused to investigate the quality of non-polar SiC substrates grown by a conventional PVT method for optoelectronic applications. The half part of the PVT-grown 6H-SiC crystal boules was sliced along a-direction and m-direction to extensively analyze non-polar planes and then remaining part of that was sliced along the basal plane to produce wafers. The non-polar SiC m-plane and a-plane exhibited apparent peaks around 2 theta=$120^{\circ}$((3-300) plane) and 2 theta=$60^{\circ}$ ((11-20) plane), respectively. FWHM values of m-plane measured along a-direction and c-direction were 60 arc see and 57 arcsec respectively, a-plane measured along m-direction and c-direction were 41 arcsec and 51 arcsec respectively. The typical absorption spectra of SiC crystals indicated that each of SiC crystals were the 6H-SiC with fundamental absorption energy of about 3.04 eV. Non-polar planes contained no micropipe on etched surface. The carrier concentration and mobility of non-polar SiC wafers have estimated by Raman spectrum. It was observed that the carrier mobility is low in the area far from seed crystal with compared to other places.

A study on micropipes and the growth morphology in 6H- SiC bulk crystal (6H - SiC bulk 단결정 성장 양상과 micropipe에 관한 연구)

  • 강승민;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.1
    • /
    • pp.44-49
    • /
    • 1995
  • Abstract The surface of 6H - SiC bulk crystal grown by sublimation process was investigated by optical microscope observation. Since, in the 6H crystal growing, the crystal had the habitual step growth attitude such that the lateral growth rate along the random a - axis orientation was higher than that along the c - axis of the growth direction, then many steps were developed. There were, also, many micropipes on the surface in the form of as-like large voids. However, they were differenciated with pores and cross- sectional shape of them were close to the circle. In this study, many micropipes, planar defects and the growth steps appeared on the grown crystal surface were investigated.

  • PDF

Study on DC Analysis of 4H-SiC Recessed-Gate MESFETs using modeling tools (4H-SiC Recessed-gate MESFET의 DC특성 모델링 연구)

  • Park, Seung-Wook;Kang, Soo-Chang;Park, Jae-Young;Shin, Moo-Whan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.238-242
    • /
    • 2001
  • In this paper, the current-voltage characteristics of a 4H-SiC MESFET is simulated by using the Atlas Simulation tool. we are able to use the simulator to extract more information about the new material 4H-SiC, including the mobility, velocity-field Curve and the Schottky barrier height. We have enabled and used the new simulator to investigate breakdown Voltage and thus predict operation limitiations of 4H-SiC device. Modeling results indicate that the Breakdown Voltage is 197 V and Current is 100 mA

  • PDF

Study on DC Analysis of 4H-SiC Recessed-Gate MESFETs using modeling tooths (4H-SiC Recessed-gate MESFET의 DC특성 모델링 연구)

  • 박승욱;강수창;박재영;신무환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.238-242
    • /
    • 2001
  • In this paper, the current-voltage characteristics of a 4H-SiC MESFET is simulated by using the Atlas Simulation tool. we are able to use the simulator to extract more information about the new material 4H-SiC, including the mobility, velocity-field Curve and the Schottky barrier height. We have enabled and used the new simulator to investigate breakdown Voltage and thus predict operation limitations of 4H-SiC device. Modeling results indicate that the Breakdown Voltage is 197 V and Current is 100 mA

  • PDF

Simulation Study of ion-implanted 4H-SiC p-n Diodes (이온주입 공정을 이용한 4H-SiC p-n Diode에 관한 시뮬레이션 연구)

  • Lee, Jae-Sang;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.128-131
    • /
    • 2009
  • Silicon carbide (SiC) has attracted significant attention for high frequency, high temperature and high power devices due to its superior properties such as the large band gap, high breakdown electric field, high saturation velocity and high thermal conductivity. We performed Al ion implantation processes on n-type 4H-SiC substrate using a SILVACO ATHENA numerical simulator. The ion implantation model used Monte-Carlo method. We simulated the effect of channeling by Al implantation in both 0 off-axis and 8 off-axis n-type 4H-SiC substrate. We have investigated the effect of varying the implantation energies and the corresponding doses on the distribution of Al in 4H-SiC. The controlled implantation energies were 40, 60, 80, 100 and 120 keV and the implantation doses varied from $2{\times}10^{14}$ to $1{\times}10^{15}\;cm^{-2}$. The Al ion distribution was deeper with increasing implantation energy, whereas the doping level increased with increasing dose. The effect of post-implantation annealing on the electrical properties of Al-implanted p-n junction diode were also investigated.

The Thermal Stability and Elevated Temperature Mechanical Properties of Spray-Deposited $SiC_P$/Al-11.7Fe-1.3V-1.7Si Composite

  • Hao, L.;He, Y.Q.;Wang, Na;Chen, Z.H.;Chen, Z.G.;Yan, H.G.;Xu, Z.K.
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.351-364
    • /
    • 2009
  • The thermal stability and elevated temperature mechanical properties of $SiC_P$/Al-11.7Fe-1.3V-1.7Si (Al-11.7Fe-1.3V-1.7Si reinforced with SiC particulates) composites sheets prepared by spray deposition (SD) $\rightarrow$ hot pressing $\rightarrow$ rolling process were investigated. The experimental results showed that the composite possessed high ${\sigma}_b$ (elevated temperature tensile strength), for instance, ${\sigma}_b$ was 315.8 MPa, which was tested at $315^{\circ}C$, meanwhile the figure was 232.6 MPa tested at $400^{\circ}C$, and the elongations were 2.5% and 1.4%, respectively. Furthermore, the composite sheets exhibited excellent thermal stability: the hardness showed no significant decline after annealing at $550^{\circ}C$ for 200 h or at $600^{\circ}C$ for 10 h. The good elevated temperature mechanical properties and excellent thermal stability should mainly be attributed to the formation of spherical ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase particulates in the aluminum matrix. Furthermore, the addition of SiC particles into the alloy is another important factor, which the following properties are responsible for. The resultant Si of the reaction between Al matrix and SiC particles diffused into Al matrix can stabilize ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase; in addition, the interface (Si layer) improved the wettability of Al/$SiC_P$, hence, elevated the bonding between them. Furthermore, the fine $Al_4C_3$ phase also strengthened the matrix as a dispersion-strengthened phase. Meanwhile, load is transferred from Al matrix to SiC particles, which increased the cooling rate of the melt droplets and improved the solution strengthening and dispersion strengthening.

Wear Characteristics of Coated $Si_3N_4$-TiC Ceramic Tool (Coated $Si_3N_4$-TiC Ceramic 공구의 마모 특성)

  • 김동원;권오관;이준근;천성순
    • Tribology and Lubricants
    • /
    • v.4 no.2
    • /
    • pp.44-51
    • /
    • 1988
  • Titanium carbide(TiC), Titanium nitride(TiN), and Titanium carbonnitride(Ti(C,N)) films were deposited on $Si_3N_4$-TiC composite cutting tools by chemical vapor deposition(CVD) using $TiCl_4-CH_4-H_2$, $TiCl_4-N_2-H_2$, and $TiCl_4-CH_4-N_2-H_2$ gas mixtures, respectively. The experimental results indicate that TiC coatings compared with TiN coatings on $Si_3N_4$ -TiC ceramic have an improved microstructural property, good thermal shock resistance, and good interfacial bonding. However TiN coatings compared with TiC coatings have a low friction coefficient with steel and good chemical stability. It is found by cutting test that coated insert compared with $Si_3N_4$-TiC ceramic have a superior flank and crater wear resistance. And multilayer coating compared with monolayer coating shows a improved wear resistance.