• Title/Summary/Keyword: a-Plane GaN

Search Result 111, Processing Time 0.031 seconds

A TEM Study on Growth Characteristics of GaN on Si(111) Substrate using MOCVD (Si(111) 기판 위에 MOCVD 법으로 성장시킨 GaN의 성장 특성에 관한 TEM 분석)

  • 신희연;정성훈;유지범;서수정;양철웅
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.135-140
    • /
    • 2003
  • The difference in lattice parameter and thermal expansion coefficient between GaN and Si which results in many defects into the grown GaN is larger than that between GaN and sapphire. In order to obtain high quality GaN films on Si substrate, it is essential to understand growth characteristics of GaN. In this study, GaN layers were grown on Si(111) substrates by MOCVD at three different GaN growth temperatures ($900^{\circ}C$, $1,000^{\circ}C$ and $1,100^{\circ}C$), using AlN and LT-GaN buffer layers. Using TEM, we carried out the comparative investigation of growth characteristics of GaN by characterizing lattice coherency, crystallinity, orientation relationship and defects formed (transition region, stacking fault, dislocation, etc). The localized region with high defect density was formed due to the lattice mismatch between AlN buffer layer and GaN. As the growth temperature of GaN increases, the defect density and surface roughness of GaN are decreased. In the case of GaN grown at $1,100^{\circ}$, growth thickness is decreased, and columns with out-plane misorientation are formed.

Semi-insulation Behavior of GaN Layer Grown on AlN Nucleation Layer

  • Lee, Min-Su;Kim, Hyo-Jeong;Lee, Hyeon-Hwi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.132-132
    • /
    • 2011
  • The sheet resistance (Rs) of undoped GaN films on AlN/c-plane sapphire substrate was investigated in which the AlN films were grown by R. F. magetron sputtering method. The Rs was strongly dependent on the AlN layer thickness and semi-insulating behavior was observed. To clarify the effect of crystalline property on Rs, the crystal structure of the GaN films has been studied using x-ray scattering and transmission electron microscopy. A compressive strain was introduced by the presence of AlN nucleation layer (NL) and was gradually relaxed as increasing AlN NL thickness. This relaxation produced more threading dislocations (TD) of edge-type. Moreover, the surface morphology of the GaN film was changed at thicker AlN layer condition, which was originated by the crossover from planar to island grains of AlN. Thus, rough surface might produce more dislocations. The edge and mixed dislocations propagating from the interface between the GaN film and the AlN buffer layer affected the electric resistance of GaN film.

  • PDF

Effects of epilayer growth temperature on properties of undoped GaN epilayer on sapphire substrate by two-step MOCVD (2단계 MOCVD법에 의해 사파이어 기판 위 성장된 undoped GaN 에피박막의 특성에 미치는 고온성장 온도변화의 영향)

  • Chang K.;Kwon M. S.;Cho S. I.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.222-228
    • /
    • 2005
  • Undoped GaN epitaxial layer was grown on c-plane sapphire substrate by a two-step growth with metalorganic chemical vapor deposition(MOCVD). We have investigated the effects of the variation of final growth temperature on surface morphology, roughness, crystal quality, optical property, and electrical property In a horizontal MOCVD reactor, the film was grown at 300 Tow low-pressure with a fixed nucleation temperature of $500^{\circ}C$, varing the final growth temperature from $850\~1050^{\circ}C$ . The undoped GaN epilayers were characterized by atomic force microscopy, high-resolution x-ray diffractometer, photoluminescence, and Hall effect measurement.

Phase Transformation in Epitaxial Growth of Galium Nitride by HVPE Process (HVPE법에 의한 질화갈륨 단결정막 성장시 상전이에 관한 연구)

  • Rakova, E.V.;Kuznetsov, A.V.;Kim, Hyang Sook;Lee, Sun Sook;Hwang, Jin Soo;Chong, Paul Joe
    • Korean Journal of Crystallography
    • /
    • v.6 no.1
    • /
    • pp.49-55
    • /
    • 1995
  • The oriented islands of cubic galium nitride are grown on the (0001) surface of hexagonal GaN epitaxial films by halide vapour phase epitaxial process. The mutual orientation of cubic β-GaN and hexagonal α-GaN phase was observed as : [110](111) β-GaN//[1120](0001) α-GaN. Trigonally faced islands of β-GaN occupy the twined positions in relation to (111) plane in parallel to the film surface. The band gap value for β-GaN determuned from photo and local catchodoluminescent measurments is estimated to be 3.18±0.30eV at room temperature.

  • PDF

Interface structure and anisotropic strain relaxation of nonpolar a-GaN on r-sapphire

  • Gong, Bo-Hyeon;Jo, Hyeong-Gyun;Song, Geun-Man;Yun, Dae-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.31-31
    • /
    • 2010
  • The growth of the high-quality GaN epilayers is of significant technological importance because of their commercializedoptoelectronic applications as high-brightness light-emitting diodes (LEDs) and laser diodes (LDs) in the visible and ultraviolet spectral range. The GaN-based heterostructural epilayers have the polar c-axis of the hexagonal structure perpendicular to the interfaces of the active layers. The Ga and N atoms in the c-GaN are alternatively stacked along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs, the stress applied along the same axis contributes topiezoelectric polarization, and thus the total polarization is determined as the sum of spontaneous and piezoelectric polarizations. The total polarization in the c-GaN heterolayers, which can generate internal fields and spatial separation of the electron and hole wave functions and consequently a decrease of efficiency and peak shift. One of the possible solutions to eliminate these undesirable effects is to grow GaN-based epilayers in nonpolar orientations. The polarization effects in the GaN are eliminated by growing the films along the nonpolar [$11\bar{2}0$] ($\alpha$-GaN) or [$1\bar{1}00$] (m-GaN) orientation. Although the use of the nonpolar epilayers in wurtzite structure clearly removes the polarization matters, however, it induces another problem related to the formation of a high density of planar defects. The large lattice mismatch between sapphiresubstrates and GaN layers leads to a high density of defects (dislocations and stacking faults). The dominant defects observed in the GaN epilayers with wurtzite structure are one-dimensional (1D) dislocations and two-dimensional (2D) stacking faults. In particular, the 1D threading dislocations in the c-GaN are generated from the film/substrate interface due to their large lattice and thermal coefficient mismatch. However, because the c-GaN epilayers were grown along the normal direction to the basal slip planes, the generation of basal stacking faults (BSFs) is localized on the c-plane and the generated BSFs did not propagate into the surface during the growth. Thus, the primary defects in the c-GaN epilayers are 1D threading dislocations. Occasionally, the particular planar defects such as prismatic stacking faults (PSFs) and inversion domain boundaries are observed. However, since the basal slip planes in the $\alpha$-GaN are parallel to the growth direction unlike c-GaN, the BSFs with lower formation energy can be easily formed along the growth direction, where the BSFs propagate straightly into the surface. Consequently, the lattice mismatch between film and substrate in $\alpha$-GaN epilayers is mainly relaxed through the formation of BSFs. These 2D planar defects are placed along only one direction in the cross-sectional view. Thus, the nonpolar $\alpha$-GaN films have different atomic arrangements along the two orthogonal directions ($[0001]_{GaN}$ and $[\bar{1}100]_{GaN}$ axes) on the $\alpha$-plane, which are expected to induce anisotropic biaxial strain. In this study, the anisotropic strain relaxation behaviors in the nonpolar $\alpha$-GaN epilayers grown on ($1\bar{1}02$) r-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVO) were investigated, and the formation mechanism of the abnormal zigzag shape PSFs was discussed using high-resolution transmission electron microscope (HRTEM).

  • PDF

Structural studies of $Mn^+$ implanted GaN film

  • Shi, Y.;Lin, L.;Jiang, C.Z.;Fan, X.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.56-59
    • /
    • 2003
  • Wurtzite GaN films are grown by low-pressure MOCVD on (0001)-plane sapphire substrates. The GaN films have a total thickness of 4 $\mu$m with a surface Mg-doped p-type layer, which has a thickness of 0.5 $\mu$m. 90k eV $Mn^{+}$ ions are implanted into the GaN films at room temperature with doses ranging from $1 \times10^{15}$ to $1 \times 10^{16}\textrm{cm}^{-2}$. After an annealing step at $770^{\circ}C$ in flowing $N_2$, the structural characteristics of the $Mn^{+}$ implanted GaN films are studied by X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) and atomic force microscopy (AFM). The structural and morphological changes brought about by $Mn^{+}$ implantation and annealing are characterized.

Growth of InGaN on sapphire by GSMBE(gas source molecular beam epitaxy) using $DMH_y$(dimethylhydrazine) as nitrogen source at low temperature (Nitrogen source로 암모니아, $DMH_y$(dimethylhydrazine)을 사용해 Gas-Source MBE로 성장된 InGaN 박막특성)

  • Cho, Hae-Jong;Han, Kyo-Yong;Suh, Young-Suk;Park, Kang-Sa;Misawa, Yusuke
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1010-1014
    • /
    • 2004
  • High quality GaN layer and $In_xGa_{1-x}N$ alloy were obtained on (0001)sapphire substrate using ammonia$(NH_3)$ and dimethylhydrazine$(DMH_y)$ as a nitrogen source by gas source molecular hem epitaxy(GSMBE) respectively. As a result, RHEED is used to investigate the relaxation processes which take place during the growth of GaN and $In_xGa_{1-x}N$. The full Width at half maximum of the x-ray diffraction(FWHM) rocking curve measured from Plane of GaN has exhibitted as narrow as 8 arcmin. Photoluminescence measurement of GaN and $In_xGa_{1-x}N$ were investigated at room temperature, where the intensity of the band edge emission is much stronger than that of deep level emission. In content of $In_xGa_{1-x}N$ epitaxial layer according to growth condition was investigated.

  • PDF

Structural characterization of nonpolar GaN using high-resolution transmission electron microscopy (HRTEM을 이용한 비극성 GaN의 구조적 특성 분석)

  • Kong, Bo-Hyun;Kim, Dong-Chan;Kim, Young-Yi;Ahn, Cheol-Hyoun;Han, Won-Suk;Choi, Mi-Kyung;Bae, Young-Sook;Woo, Chang-Ho;Cho, Hyung-Koun;Moon, Jin-Young;Lee, Ho-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.23-23
    • /
    • 2009
  • GaN-based nitride semiconductors have attracted considerable attention in high-brightness light-emitting-diodes (LEDs) and laser diodes (LDs) covering from green to ultraviolet spectral range. LED and LD heterostructures are usually grown on (0001)-$Al_2O_3$. The large lattice mismatch between $Al_2O_3$ substrates and the GaN layers leads to a high density of defects(dislocations and stacking faults). Moreover, Ga and N atoms are arranged along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs heterostructures, stress applied along the same axis can also give rise to piezoelectric polarization. The total polarization, which is the sum of spontaneous and piezoelectric polarizations, is aligned along the [0001] direction of the wurtzite heterostructures. The change in the total polarization across the heterolayers results in high interface charge densities and spatial separation of the electron and hole wave functions, redshifting the photoluminescence peak and decreasing the peak intensity. The effect of polarization charges in the GaN-based heterostructures can be eliminated by growing along the non-polar [$11\bar{2}0$] (a-axis) or [$1\bar{1}00$] (m-axis) orientation instead of thecommonly used polar [0001] (c-axis). For non-polar GaN growth on non-polar substrates, the GaN films have high density of planar defects (basal stacking fault BSFs, prismatic stacking fault PSFs), because the SFs are formed on the basal plane (c-plane) due to their low formation energy. A significant reduction in defect density was recently achieved by applying blocking layer such as SiN, AlN, and AlGaN in non-polar GaN. In this work, we were performed systematic studies of the defects in the nonpolar GaN by conventional and high-resolution transmission electron microscopy.

  • PDF

Vapor Phase Epitaxial Growth and Properties of GaN (GaN의 기상성장과 특성)

  • 김선태;문동찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.72-75
    • /
    • 1996
  • A hydride vapor phase epitaxy (HVPE) method is performed to prepare the GaN thin films on c-plane sapphire substrate. The full-width at half maximum of double crystal X-ray rocking curves from 20$\mu\textrm{m}$-thick GaN was 576 arcsecond. The photoluminescence spectrum measured 10 K shows the hallow bound exciton (I$_2$) line and weak donor-acceptor peak, however, there was not observed deep donor-acceptor pair recombination indicate the GaN crystals prepared in this study are of high purity and high crystalline quality. The GaN layer is n-type conducting with electron mobility of 72 $\textrm{cm}^2$/V$.$sec and with carrier concentration of 6 x 10$\^$18/cm/sup-3/.

  • PDF

Investigation of Structural and Optical Properties of III-Nitride LED grown on Patterned Substrate by MOCVD (Patterned substrate을 이용하여 MOCVD법으로 성장된 고효율 질화물 반도체의 광특성 및 구조 분석)

  • Kim, Sun-Woon;Kim, Je-Won
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.626-631
    • /
    • 2005
  • GaN-related compound semiconductors were grown on the corrugated interface substrate using a metalorganic chemical vapor deposition system to increase the optical power of white LEDs. The patterning of substrate for enhancing the extraction efficiency was processed using an inductively coupled plasma reactive ion etching system and the surface morphology of the etched sapphire wafer and that of the non-etched surface were investigated using an atomic force microscope. The structural and optical properties of GaN grown on the corrugated interface substrate were characterized by a high-resolution x-ray diffraction, transmission electron microscopy, atomic force microscope and photoluminescence. The roughness of the etched sapphire wafer was higher than that of the non-etched one. The surface of III-nitride films grown on the hemispherically patterned wafer showed the nano-sized pin-holes that were not grown partially. In this case, the leakage current of the LED chip at the reverse bias was abruptly increased. The reason is that the hemispherically patterned region doesn't have (0001) plane that is favor for GaN growth. The lateral growth of the GaN layer grown on (0001) plane located in between the patterns was enhanced by raising the growth temperature ana lowering the reactor pressure resulting in the smooth surface over the patterned region. The crystal quality of GaN on the patterned substrate was also similar with that of GaN on the conventional substrate and no defect was detected in the interface. The optical power of the LED on the patterned substrate was $14\%$ higher than that on the conventional substrate due to the increased extraction efficiency.