• Title/Summary/Keyword: a wide slot antenna

Search Result 84, Processing Time 0.024 seconds

A Compact UWB Planar Antenna with WLAN Band-Notch Characteristic

  • Park, Dong-Kook;Kwak, Byung-Haw
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.7
    • /
    • pp.857-862
    • /
    • 2007
  • A novel compact ultra wideband(UWB) antenna for UWB application is proposed in this paper. The proposed antenna with $22mm{\times}26mm{\times}1.6mm$ covers the entire UWB bandwidth and has band notch characteristic for the frequency band of $5.15{\sim}5.825GHz$ limited by WLAN. The antenna has a concaved ground plane and staircase shape patch to achieve the wide bandwidth, and has an U shape slot with $\lambda/4$ length to notch the band. The return loss and group delay of the proposed antenna are measured.

Design of Wide band folded monopole slot antenna for 3G/4G/5G/Wi-Fi(dual band) services (3G/4G/5G/Wi-Fi(이중대역)용 광대역 모노폴 슬롯 안테나 설계)

  • Shin, Dong-Gi;Lee, Yeong-Min;Lee, Young-Soon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.127-134
    • /
    • 2022
  • A modified folded monopole slot antenna for 3G WCDMA (1.91 ~ 2.17 GHz), 4G LTE (2.17 ~ 2.67 GHz), 3.5 GHz 5G (3.42 ~ 3.7 GHz) and Wi-Fi dual band (2.4 ~ 2.484 GHz / 5.15 ~ 5.825 GHz) was proposed for the first time. The proposed antenna is designed and fabricated on a FR-4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of 35 × 60 mm2. The measured impedance bandwidth of the proposed antenna is 2910 MHz(1.84 ~ 4.75 GHz) and 930 MHz(5.11 ~ 6.04 GHz), antenna gain in each frequency band is from 1.811 to 3.450 dBi. In particular, it was possible to obtain a commercially suitable omni-directional radiation pattern in all frequency bands of interest.

Double-Layered Frequency Selective Surface Superstrate Using Ring Slot and Dipole-Shaped Unit Cell Structure

  • Lee, Hong-Min;Kim, Yong-Jin
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.86-91
    • /
    • 2010
  • In this paper, a double-layered frequency selective surface(FSS) superstrate was built and tested. The unit cell of the proposed FSS consists of a ring slot and a dipole-shaped structure and shows a complementary frequency response. Each unit cell is printed on two sides of a substrate. By using these double-layered structures, the first resonant frequency of the pass-band can be lowered. As a result, the size of the unit cell is minimized and the spacing between the other cells is reduced. The proposed FSS-dipole composite antenna is designed for the gain enhancement of wide-band code division multiple access(WCDMA) frequency bands(1.92~2.17 GHz) with a low quality factor(Q=0.17). To verify the gain enhancement performance of the FSS, an FSS-dipole composite antenna was created. Although the FSS layer enhances the gain of the primary radiation source of the dipole antenna, the FSS-dipole complex antenna cannot show a uniform gain over the entire desired frequency band. The experimental results show a gain enhancement of 3 dBi with an FSS superstrate in the WCDMA frequency band.

A Study on the Design of Microstrip Antenna in 2 GHz Band (2 GHz대 마이크로스트립 안테나 설계에 관한 연구)

  • 고영혁
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.1
    • /
    • pp.32-43
    • /
    • 1999
  • In this paper, the transformed QMSA to load a capacitor without limitation of the electric force on QMSA(Quarter-wavelength Microstrip Antenna) is designed. Bandwidth of the designed and manufactured antenna is 5.7% at the resonant frequency of 2.0 GHz and the resonant frequency and bandwidth versus change of any arbitrary feed point is observed. Since the size of wide slot width between the left and right parallel plate to load a capacitor is very wide bandwidth, will be suitable for very wide bandwidth communication. The radiation pattern characteristics of the designed antenna based on the dipole structure and the aperture structure analysis method. As calculation results, relative backward radation is - 5 dB.

  • PDF

A Broadband High Gain Planar Vivaldi Antenna for Medical Internet of Things (M-IoT) Healthcare Applications

  • Permanand, Soothar;Hao, Wang;Zaheer Ahmed, Dayo;Falak, Naz;Badar, Muneer;Muhammad, Aamir
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.245-251
    • /
    • 2022
  • In this paper, a high gain, broadband planar vivaldi antenna (PVA) by utilizing a broadband stripline feed is developed for wireless communication for IoT systems. The suggested antenna is designed by attaching a tapered-slot construction to a typical vivaldi antenna, which improves the antenna's radiation properties. The PVA is constructed on a low-cost FR4 substrate. The dimensions of the patch are 1.886λ0×1.42λ0×0.026λ0, dielectric constant Ɛr=4.4, and loss tangent δ=0.02. The width of the feed line is reduced to improve the impedance bandwidth of the antenna. The computed reflection coefficient findings show that the suggested antenna has a 46.2% wider relative bandwidth calculated at a 10 dB return loss. At the resonance frequencies of 6.5 GHz, the studied results show an optimal gain of 5.82 dBi and 85% optimal radiation efficiency at the operable band. The optometric analysis of the proposed structure shows that the proposed antenna can achieve wide enough bandwidth at the desired frequency and hence make the designed antenna appropriate to work in satellite communication and medical internet of things (M-IoT) healthcare applications.

Compact LTCC Patch Antenna Integrating a Wideband Vertical Transition for millimeter-wave SoP Applications (밀리미터파 SoP 응용을 위해 광대역 수직천이를 집적한 초소형 LTCC 팻치안테나)

  • Lee, Young Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • In this work, a compact patch antenna based on a low temperature cofired ceramic (LTCC) has been presented for V-band system-on-package (SoP) applications. In order to integrate it with transceiver block, a waveguide (W/G) to embedded microstrip line (eMSL) vertical transition was designed using slot-fed double stacked patch antennas for easy assembly and wide bandwidth. The $2{\times}2$ patch antenna integrating the transition was designed and fabricated in the 5-layer LTCC dielectrics. The whole size of the fabricated antenna including the $2{\times}2$ patches, transition and W/G was $20{\times}24{\times}5.39mm^3$. The fabricated antenna has achieved a 10 dB impedance bandwidth of 2.45 GHz from 61 to 63.45 GHz.

A study on the Design and Fabrication of Microstrip Array Antenna for Ultra Wideband Applications (초광대역 마이크로스트립 안테나의 설계와 제작에 관한 연구)

  • Ham, Min-Su;Choi, Byung-Ha
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.503-507
    • /
    • 2007
  • In this paper, the ultra-widebend, microstrip patch antenna with the bandwidth of 3 GHz was implemented for ultra-wideband(UWB) wireless communication applications. In order to cover the very wide bandwidth of 3 GHz, a multi-resonance antenna was designed, each resonance frequency was separated into five frequency bend, 7.5, 8.1, 8.7, 9.3, and 9.9GHz with the interval of 600MHz BW. And for wideband characteristics of each antenna, U-slot antennas were designed at each center frequency. Designed five U-slot antennas were connected in series for multi-resonance of 3GHz BW and wideband matching was also designed for impedance matching transmission line calculated. The relative dielectric constant, the height, the loss tangent of the PCB substrate were ${\epsilon}_r=4.8,\;h=0.6$ and loss tangent=0.0009 respectively. The implemented antenna's radiation patterns and gain were directivity characteristics and $1.46{\sim}4.08dBi$ at the five separated center frequency.

A Low-profile Internal Antenna for GSM/GPS/DCS/US-PCS Mobile Handsets (GSM/GPS/DCS/US-PCS 대역 이동 단말기용 저자세 내장형 안테나)

  • Jung Woo-Jae;Jung Byung-Woon;Lee Hak-Yong;Lee Byungie
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.1 s.6
    • /
    • pp.89-95
    • /
    • 2005
  • In this paper, a quad-band antenna for GSM/GPS/DCS/US-PCS handsets is proposed. The proposed antenna is low-profile for mounting in limited inner space of a handset. It consists of three open points with quarter wave length for multi-band operation. The ground plane below the patch is removed for wide-bandwidth without the variation of antenna size and the slot is added at the center of the patch for convenient matching in high frequency band. It provides a enough bandwidth within VSWR 3:1 at all bands. In addition, the measured peak gains are between -2.19 and 2.09 in anechoic chamber (10m$\times$6m$\times$4m).

  • PDF

Design of Loop Type Inserting Slot Antenna to Apply Bluetooth/Zigbee/WiMax/WLAN(2.4~5.82 GHz) Band (Bluetooth/Zigbee/WiMAX/WLAN(2.4~5.82 GHz) 대역 응용을 위해 루프 형태를 삽입한 슬롯 안테나 설계)

  • Hong, Yoon-Gi;An, Sang-Chul;Jung, Hoon;Hong, Won-Gi;Jung, Cheon-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.435-443
    • /
    • 2009
  • In this paper, we propose a microstrip slot antenna that works in Bluetooth, Zigbee, WiMAX and WLAN frequency bands($2.4{\sim}5.825\;GHz$). To get the wide bandwidth from the microstrip antenna proposed, we insert a pair of parastic strips along the feed line on the FR-4 dielectric substance(${\varepsilon}_r=4.8$). Furthermore, a simple geometrical rotation with quadrilateral slot is designed to maximize the bandwidth and to gain a wider frequency band than the conventional rectangular slot antenna. A additional design of the loop type is added to a cactus-shaped patched for 2.4 GHz ISM frequency band. The total measured bandwidth of the antenna is from 2.4 GHz to 6 GHz and the maximum gains of the antenna are 3.82 dBi, 4.48 dBi, 6.41 dBi and 6.65 dBi at the frequencies of 2.4 GHz, 3.5 GHz, 5.25 GHz and 5.77 GHz.

A Proper Design of Parabolic Antenna according the Up-grade to Wide-band Loading (대역폭 증가에 따른 포물선 안테나의 설계)

  • Son, Hyun;Kim, Ki-Wan
    • 전기의세계
    • /
    • v.25 no.6
    • /
    • pp.69-73
    • /
    • 1976
  • Thd idle channel noise on FDM-microwave communication system is increasing because of the up-grade to wide-band loading. The thermal noise on receiver of microwave radio is measured according to their channel slot frequencies, low, meddle and high slots on the base band, from 60 channels to 960 channels. And suggested a consideration for system engineering, to reduce the thermal noise from radio microwave receivers, so as to improve signal to noise ratio.

  • PDF