• Title/Summary/Keyword: a wheel slip

Search Result 204, Processing Time 0.023 seconds

RESULTS OF FUNCTIONAL SIMULATION FOR ABS WITH PRE-EXTREME CONTROL

  • IVANOV V.;BELOUS M.;LIAKHAU S.;MIRANOVICH D.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.37-44
    • /
    • 2005
  • The creation of automotive systems of active safety with intelligent functions needs the use of new control principles for the wheel and automobile. One of such directions is the pre-extreme control strategy. Its aim is the ensuring of wheel's work in pre-extreme, stable area of tire grip wheel slip dependence. The simplest realization of pre-extreme control in automotive anti-lock brake systems consists in the threshold and gradient algorithms. A comparative analysis of these algorithms, which has been made on 'hardware in-the-loop' simulation results of the braking for bus with various anti-lock brake systems (ABS), indicated their high efficiency.

Study on Maximum Adhesive Effort Estimation using Disturbance Observer (외란관측기를 이용한 최대 점착력 추정에 관한 연구)

  • Jun, K.Y.;Lee, S.H.;Oh, B.H.;Kang, S.U.;Lee, H.G.;Kim, Y.J.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1120-1122
    • /
    • 2001
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

  • PDF

Integrated Control of Torque Vectoring and Rear Wheel Steering Using Model Predictive Control (모델 예측 제어 기법을 이용한 토크벡터링과 후륜조향 통합 제어)

  • Hyunsoo, Cha;Jayu, Kim;Kyongsu, Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.53-59
    • /
    • 2022
  • This paper describes an integrated control of torque vectoring and rear wheel steering using model predictive control. The control objective is to minimize the yaw rate and body side slip angle errors with chattering alleviation. The proposed model predictive controller is devised using a linear parameter-varying (LPV) vehicle model with real time estimation of the varying model parameters. The proposed controller has been investigated via computer simulations. In the simulation results, the performance of the proposed controller has been compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the lateral stability and handling performance.

Influence of the Speeds on the Curve Squeal Noise of Railway Vehicles (철도차량의 곡선부 스킬 소음에 대한 속도의 영향)

  • Lee, Chan-Woo;Kim, Jae-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.572-577
    • /
    • 2011
  • Curve squealing of inter-city railway vehicle is a noise with high acoustic pressure and rather narrow frequency spectra. This noise turns out to be very annoying for the people living in the neighborhood of locations and the passenger in railway vehicle where this phenomenon occurs. Squealing is caused by a self-exited stick-slip oscillation in the wheel-rail contact. Curve squeal noise of railway vehicles that passed by a factor of the speed limit, so to overcome in order to improve running performance is one of the largest technology. In the present paper, characteristic of squeal noise behavior at the Hanvit-200 tilting train test-site. Curve squealing of railway wheels/rail contact occurs in R400~ R800 curves with a frequency range of about 4~11 kHz. If the curve is less than the radius of wheel frail contact due to |left-right| noise level difference (dBA) shows a significant effect of squeal noise were more likely.

Estimation Study on the Wheel/Rail Adhesion Coefficient of Railway Vehicles Using the Scaled Adhesion Tester (축소 점착시험기를 이용한 휠/레일의 점착계수 추정에 관한 연구)

  • Kim, Min Soo;Hee Kim, Kyung;Kwon, Seok Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.603-609
    • /
    • 2015
  • Railway vehicles driven by wheels obtain force required for propulsion and braking by adhesive force between wheels and rails, this adhesive force is determined by multiplying adhesion coefficient of the friction surface by the applied axle load. Because the adhesion coefficient has a peak at certain slip velocity, it is important to determine the maximum values of the friction coefficient on the contact area. But this adhesive phenomenon is not clearly examined or analyzed. Thus we have developed new test procedure using the scaled adhesion test-bench for analyzing of the adhesion coefficient between wheel and rail. This adhesion test equipment is an experimental device that contacts mutually with twin disc which are equivalent to wheels and rails of railway vehicles.

A Study on the Design of Electronic Control Unit for Antilock Brake System (전자제어식 미끄럼 방지 제동장치의 제어기 설계에 관한 연구)

  • Ha, Yeon-Chul;Cho, Jeong-Mok;Shin, Byung-Chul;Hwang, Don-Ha;Park, Doh-Young;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2345-2347
    • /
    • 2000
  • ABS(Antilock Brake System) prevents the wheels from "locking" and improve "handling" during braking. Currently, safety and environmental issues are a major concern in the automotive industry. ABS has become the vital brake system. ABS is composed of sensors for wheel speed, a pressure modulator for controlling the brake pressures in the wheel brake cylinders, and an electronic control unit(ECU) which evaluates the signals from the wheel speed sensors and converts these to commands to control the pressure of modulator. In this paper, ECU developed for commercial vehicles is described. Detection of wheel slip, control algorithms of ABS, and diagnosis method of ECU are presented.

  • PDF

A study on independent control of drive motors for weight reduction of electric vehicles (전기자동차 경량화를 위한 구동 모터 독립제어에 관한 연구)

  • Hyeon-Wook Yoo;Jin-Young Park
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.5
    • /
    • pp.302-312
    • /
    • 2024
  • In this paper, I proposed an independent control system for a driving motor that directly connects and controls two motors to the rear driving wheel. Typical electric vehicles have used differential gears to distribute and transmit the output from one driving motor to each rear wheel. However, the differential gear is one of the very heavy parts in the electric vehicle, and causes a lot of power loss in the process of transmitting power. Therefore, I want to install two motors to control each wheel directly and remove the differential gears. Each rear wheel is independently controlled by two motors to suit the driving situation of the vehicle. When the vehicle is going straight, the controller synchronizes the rotational speed of the two wheels to make the vehicle go straight, and when the vehicle is turning, the vehicle can rotate by varying the rotational speed of each rear wheel according to the steering angle and driving speed of the vehicle. And since each rear wheel is controlled independently, it is expected that it can be controlled to perform the function of the limited slip differential through a program in a situation where the gripping force of one driving wheel decreases.

Flow and torque analysis of hydraulic limited slip differential system (유압식 차동제한장치의 유동 및 토크해석)

  • Huh Y.;Kim H.I.;Bae B.K.;Seok C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1705-1709
    • /
    • 2005
  • The hydraulic LSD which uses the principle of gear pump is packed with viscous oil in tight container. When a slip occurs on one wheel, the hydraulic LSD generates torque caused by high oil pressure in the container. In this study, two dimensional(2-D) side pinion gear model was developed for hydraulic LSD. Using that model the flow analysis was conducted to preestimate pressure distributions of the side pinion gear according to the variations in the design factors such as oil viscosity, gear gap and rpm. Then, applying the obtained pressure distributions on the side pinion gear, finite element analysis was conducted to evaluate the torque characteristics. From the analysis results, the torque characteristics according to the design factor variations were evaluated.

  • PDF

Analysis of the Kart Frame Twisting Characteristics using 4 Wheel Motion Measurement (4륜 거동 측정에 의한 카트 프레임의 비틀림특성 분석)

  • Kim, Y.H.;You, C.J.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.71-78
    • /
    • 2011
  • A kart is a vehicle without the suspension system and the differential gear. The kart frame as an elastic body plays the role of a spring. By the cornering of a kart, rolling, pitching and twisting motions are induced in the kart frame. Also the slip or noncontact of the wheel and a permanent deformation of the kart frame can be induced. In order to examine closely this phenomenon, measurement on height-displacements with various sensors and tracking system and analysis on the kart frame twisting characteristics with the rolling and pitching angle are needed. According to the measurement result, while driving in a curve at high speed the kart frame is quite twisted. Analysis on the measurement results shows that a kart used primarily in high speed requires a frame with low torsional stiffness and a frame material with high tensile strength and large elongation.

INTEGRATED VEHICLE CHASSIS CONTROL WITH A MAIN/SERVO-LOOP STRUCTURE

  • Li, D.;Shen, X.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.803-812
    • /
    • 2006
  • In order to reduce the negative effects of dynamic coupling among vehicle subsystems and improve the handling performance of vehicle under severe driving conditions, a vehicle chassis control integration approach based on a main-loop and servo-loop structure is proposed. In the main-loop, in order to achieve satisfactory longitudinal, lateral and yaw response, a sliding mode controller is used to calculate the desired longitudinal, lateral forces and yaw moment of the vehicle; and in the servo-loop, a nonlinear optimizing method is adopted to compute the optimal control inputs, i.e. wheel control torques and active steering angles, and thus distributes the forces and moment to four tire/road contact patches. Simulation results indicate that significant improvement in vehicle handling and stability can be expected from the proposed chassis control integration.