• Title/Summary/Keyword: a virus disease

Search Result 1,612, Processing Time 0.024 seconds

Expression of the VP2 protein of feline panleukopenia virus in insect cells and use thereof in a hemagglutination inhibition assay

  • Yang, Dong-Kun;Park, Yeseul;Park, Yu-Ri;Yoo, Jae Young;An, Sungjun;Park, Jungwon;Hyun, Bang-Hun
    • Korean Journal of Veterinary Research
    • /
    • v.61 no.2
    • /
    • pp.19.1-19.7
    • /
    • 2021
  • Feline panleukopenia virus (FPV) causes leukopenia and severe hemorrhagic diarrhea, killing 50% of naturally infected cats. Although intact FPV can serve as an antigen in the hemagglutination inhibition (HI) test, an accidental laboratory-mediated infection is concern. A non-infectious diagnostic reagent is required for the HI test. Here, we expressed the viral protein 2 (VP2) gene of the FPV strain currently prevalent in South Korea in a baculovirus expression system; VP2 protein was identified by an indirect immunofluorescence assay, electron microscopy (EM), Western blotting (WB), and a hemagglutination assay (HA). EM showed that the recombinant VP2 protein self-assembled to form virus-like particles. WB revealed that the recombinant VP2 was 65 kDa in size. The HA activity of the recombinant VP2 protein was very high at 1:215. A total of 143 cat serum samples were tested using FPV (HI-FPV test) and the recombinant VP2 protein (HI-VP2 test) as HI antigens. The sensitivity, specificity, and accuracy of the HI-VP2 test were 99.3%, 88.9%, and 99.3%, respectively, compared to the HI-FPV test. The HI-VP2 and HI-FPV results correlated significantly (r = 0.978). Thus, recombinant VP2 can substitute for intact FPV as the serological diagnostic reagent of the HI test for FPV.

A Chinese Case of Coronavirus Disease 2019 (COVID-19) Did Not Show Infectivity During the Incubation Period: Based on an Epidemiological Survey

  • Bae, Jong-Myon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.53 no.2
    • /
    • pp.67-69
    • /
    • 2020
  • Controversy remains over whether the coronavirus disease 2019 (COVID-19) virus may have infectivity during the incubation period before the onset of symptoms. The author had the opportunity to examine the infectivity of COVID-19 during the incubation period by conducting an epidemiological survey on a confirmed patient who had visited Jeju Island during the incubation period. The epidemiological findings support the claim that the COVID-19 virus does not have infectivity during the incubation period.

Disease monitoring of cultured rainbow trout and coho salmon in Gangwon province in 2021 (2021년 강원도 양식 무지개송어 및 은연어 비법정전염병 모니터링)

  • Soo-ji, Woo;Seung Hoon, Lee;So-Sun, Kim;Soon-Gyu, Byun;Joon-Young, Song;Seong Don, Hwang
    • Journal of fish pathology
    • /
    • v.35 no.2
    • /
    • pp.215-223
    • /
    • 2022
  • Disease including parasite, bacteria and virus cause serious mortality to salmonid fish in the aquaculture. In this study, we investigated the current disease status of the rainbow trout (Oncorhynchus mykiss) and coho salmon (Oncorhynchus kisutch) in Yanayang, Pyeongchang, Jeongseon and Yeongwol of Gangwon province in 2021 and performed molecular characterization of those pathogen. For parasites, Ichthyophthirius multifiliis was observed at 2 farms. For bacteria, we identified Aeromonas sobria from kidney of rainbow trout using phylogenetic analysis of gyrB gene. A. salmonicida were isolated from necrosis site of gill cover and fin in coho salmon and necrotic lesion of fin in rainbow trout. Phylogenetic analysis using vap gene indicated that A. salmonicida isolated in this study were clustered with previously reported A. salmonicida subsp. salmonicida isolates. For virus, JRt-Nagano type of infectious haematopoietic necrosis virus was detected in rainbow trout, but infectious pancreatic necrosis virus and Oncorhynchus masou virus were not detected. These results provide useful information for the prevention of disease spread and transmission when cultivating new species such as Atlantic salmon in Korea.

Serological and molecular prevalence of lumpy skin disease virus in Korean water deer, native and dairy cattle in Korea

  • Ko, Young-Seung;Oh, Yeonsu;Lee, Taek Geun;Bae, Da-Yun;Tark, Dongseob;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.2
    • /
    • pp.133-137
    • /
    • 2022
  • Lumpy skin disease (LSD) is a severe cross-border infectious disease that causes fever, skin and visceral nodules in cattle. LSD is caused by the lumpy skin disease virus (LSDV), a dsDNA virus that belongs to the genus Capripoxvirus. Although LSD has been found only in Southern Africa traditionally, in the last decade it is spreading very quickly through the Middle East and into Eastern Europe and China. It usually affects cattle and water buffalos being transmitted by blood-feeding insects. As it causes a huge economic impact, LSD is a notifiable disease by World Organisation for Animal Health, and managed as the legal infectious disease class I in Korea. Therefore, the purpose of this study was to confirm the existence of LSDV antigens or antibodies in Korean livestock. We collected 1,200 blood samples from cattle (Korean native and dairy cattle) and Korean water deer in 4 major provinces of the country, then tested the existence of LSDV antigen and antibody. None (0.0%) of the 1,200 blood samples were positive for both antigen and antibody of LSDV. To the best of our knowledge, this is the first study that examines the prevalence of LSDV in Korea. Our study aims to report the LSDV occurrence situation obtained by surveillance in Korea and provide information that may help prevention of LSD epidemics.

Hemorrhagic disease caused by bovine viral diarrhea virus-2a in Korean Indigenous Cattle: case reports

  • Hyung-Chul Cho;Byoung-Soo Kim;Dong-Hun Jang;Kyung-Hyun Lee;Kyoung-Seong Choi
    • Korean Journal of Veterinary Research
    • /
    • v.63 no.1
    • /
    • pp.7.1-7.5
    • /
    • 2023
  • Two 1-year-old Korean native steers in the same herd presented severe hemorrhagic diarrhea. Case 1 had severe dehydration and died after 3 days, whereas case 2 had anorexia, depression, and severe diarrhea with mucus and blood. Only case 2 was necropsied, and bovine viral diarrhea virus-2a (BVDV2a) was detected in the tissues of its alimentary tract. Gross lesions, including erosion, ulceration, and extensive hemorrhage, were observed in the digestive tract mucosa. Immunohistochemistry revealed marked positive staining for BVDV2a antigen in the large intestine. These findings are indicative of hemorrhagic disease caused by BVDV2a in a native Korean steer.

Double membrane-bound particles associated with eriophyid mite-borne plant diseases of unknown etiology : a potentially new group of plant viruses\ulcorner

  • Ahn, Kyung-Ku;Kim, Kyung-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1997.06a
    • /
    • pp.5-21
    • /
    • 1997
  • Unique virus-like particles were associated with five eriophyid mite-borne plant diseases of unknown etiology; fig mosaic, redbud yellow ringspot, rose orsette, thistle mosaic, and high plains disease of corn and wheat. Quasi-spherical, double membrane-bound particles (DMPs), 120 - 200 nm in diameter, were observed in the cytoplasm of all cell types in symptomatic leaves of infected plants. No DMPs were observed in symptomless plants. The DMPs in symptomatic thistles were associated with two types of inclusions, electron-dense amorphous material and tubular aggregates. Similar amorphous inclusions were also found in corn and wheat with high plains disease, while tubular inclusions were observed in figs with mosaic symptoms. The particles and inclusions were similar in some aspects to immature particles associated with viroplasms of animal and insect poxviruses and also to the double-enveloped particles of tomato spotted wilt virus associated with viroplasms during early stages of infection, but were unique and unlike any known plant viruses. The DMPs and associated viroplasm-like inclusions in the high plains disease were specifically immunogold labeled in situ with the disease-specific antiserum. Thread-like structures, similar to tenuivirus particles, present in the partially purified virus preparations were also immunogold labeled with the antiserum. It is suggested that the thread-like structures are derived from the DMP. In many cells of symptomatic corn and wheat samples, DMPs occurred together with flexuous rod-shaped particles and cylindrical inclusions of wheat streak mosaic potyvirus (WSMV), suggesting that the disease is caused by a mixed infection of WSMV and the agent represented by the DMPs. Based on cytopathology, symptomatology and mite and/or graft-transmissibility, the five diseases described in this paper are potentially caused by virus(es) and the DMPs associated with these diseases may represent virus particles. If the DMPs are indeed viral in nature, they would comprise a new group of plant viruses.

  • PDF

Development of a Multiplex Polymerase Chain Reaction Assay for Detecting Five Previously Unreported Papaya Viruses for Quarantine Purposes in Korea

  • Miah Bae;Mi-Ri Park
    • Research in Plant Disease
    • /
    • v.30 no.3
    • /
    • pp.304-311
    • /
    • 2024
  • There are concerns about the introduction and spread of plant pests and pathogens with globalization and climate change. As commercial control agents have not been developed for plant viruses, it is important to prevent virus spread. In this study, we developed a multiplex polymerase chain reaction (PCR) detection method to rapidly diagnose and control three DNA (papaya golden mosaic virus, Lindernia anagallis yellow vein virus, and melon chlorotic leaf curl virus) and two RNA (papaya leaf distortion mosaic virus and lettuce chlorosis virus) viruses that infect papaya. Specific primer sets were designed for the virus coat protein. Performing PCR, clear bands were observed with no non-specific reaction. Our multiplex PCR method can simultaneously detect small amounts of DNA/RNA to diagnose five viruses infecting papaya and prevent the spread of the virus.

Phylogenetic Characteristics of Yellow Head Virus (YHV) Genotype 8 Isolated from Fenneropenaeus chinensis in Korea (자연산 대하(Fenneropenaeus chinensis)에서 검출된 노랑머리 바이러스 Genotype 8의 계통분류학적 특성)

  • Jang, Gwang Il;Kim, Bo Sung;Oh, Yun Kyeong;Hwang, Jee Youn;Kwon, Mun Gyeong;Kim, Sumi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.698-702
    • /
    • 2021
  • Yellow head virus (YHV) is a rod-shaped positive-sense single-stranded RNA virus, classified into the genus Okavirus, family Roniviridae, and order Nidovirales. In this study, 200 fleshy prawns (Fenneropenaeus chinensis) collected from the vicinity of Narodo in Goheung-gun, Korea, were screened for the presence of yellow head complex viruses and related genotype such as YHV genotype 8. The detection rate of YHV genotype 8 among the 200 fleshy prawns, determined using nested RT-PCR (reverse transcription polymerase chain reation), was 39.0%. Phylogenetic analysis of the ORF1b gene of YHV showed that eight distinct genetic lineages were detected. The four strains of YHV genotype 8 obtained in this study formed a robust clade with the YHV genotype 8 group that was first isolated from fleshy prawns in China suspected to have acute hepatopancreatic necrosis disease (AHPND).

Evaluation of different molecular methods for detection of Senecavirus A and the result of the antigen surveillance in Korea during 2018

  • Heo, JinHwa;Lee, Min-Jung;Kim, HyunJoo;Lee, SuKyung;Choi, Jida;Kang, Hae-Eun;Nam, Hyang-Mi;Nah, JinJu
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.1
    • /
    • pp.15-19
    • /
    • 2021
  • Senecavirus A (SVA), previously known as Seneca Valley virus, can cause vesicular disease and neonatal losses in pigs that is clinically indistinguishable from foot-and-mouth disease virus (FMDV). After the first case report in Canada in 2007, it had been restrictively identified in North America including United States. But, since 2015, SVA emerged outside North America in Brazil, and also in several the Asian countries including China, Thailand, and Vietnam. Considering the SVA occurrence in neighboring countries, there has been a high risk that Korea can be introduced at any time. In particular, it is very important in terms of differential diagnosis in the suspected case of vesicular diseases in countries where FMD is occurring. So far, several different molecular detection methods for SVV have been published but not validated as the reference method, yet. In this study, seven different molecular methods for detecting SVA were evaluated. Among them, the method by Flowler et al, (2017) targeted to 3D gene region with the highest sensitivity and no cross reaction with other vesicular disease agents including FMDV, VSV and SVD, was selected and applied further to antigen surveillance of SVA. A total of 245 samples of 157 pigs from 61 farms submitted for animal disease diagnose nationwide during 2018 were tested all negative. In 2018, no sign of SVA occurrence have been confirmed in Korea, but the results of the surveillance for SVA needs to be continued and accumulated at a high risk of SVA in neighboring countries.

Current progress on development of respiratory syncytial virus vaccine

  • Chang, Jun
    • BMB Reports
    • /
    • v.44 no.4
    • /
    • pp.232-237
    • /
    • 2011
  • Human respiratory syncytial virus (HRSV) is a major cause of upper and lower respiratory tract illness in infants and young children worldwide. Despite its importance as a respiratory pathogen, there is currently no licensed vaccine for prophylaxis of HRSV infection. There are several hurdles complicating the development of a RSV vaccine: 1) incomplete immunity to natural RSV infection leading to frequent re-infection, 2) immature immune system and maternal antibodies of newborn infants who are the primary subject population, and 3) imbalanced Th2-biased immune responses to certain vaccine candidates leading to exacerbated pulmonary disease. After the failure of an initial trial featuring formalin-inactivated virus as a RSV vaccine, more careful and deliberate efforts have been made towards the development of safe and effective RSV vaccines without vaccine-enhanced disease. A wide array of RSV vaccine strategies is being developed, including live-attenuated viruses, protein subunit-based, and vector-based candidates. Though licensed vaccines remain to be developed, our great efforts will lead us to reach the goal of attaining safe and effective RSV vaccines in the near future.