• Title/Summary/Keyword: a statistic scale-invariant

Search Result 4, Processing Time 0.015 seconds

On scaled cumulative residual Kullback-Leibler information

  • Hwang, Insung;Park, Sangun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1497-1501
    • /
    • 2013
  • Cumulative residual Kullback-Leibler (CRKL) information is well defined on the empirical distribution function (EDF) and allows us to construct a EDF-based goodness of t test statistic. However, we need to consider a scaled CRKL because CRKL is not scale invariant. In this paper, we consider several criterions for estimating the scale parameter in the scale CRKL and compare the performances of the estimated CRKL in terms of both power and unbiasedness.

A CHARACTERIZATION OF GAMMA DISTRIBUTION BY INDEPENDENT PROPERTY

  • Lee, Min-Young;Lim, Eun-Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • Let {$X_n,\;n{\geq}1}$ be a sequence of independent identically distributed(i.i.d.) sequence of positive random variables with common absolutely continuous distribution function(cdf) F(x) and probability density function(pdf) f(x) and $E(X^2)<{\infty}$. The random variables $\frac{X_i{\cdot}X_j}{(\Sigma^n_{k=1}X_k)^{2}}$ and $\Sigma^n_{k=1}X_k$ are independent for $1{\leq}i if and only if {$X_n,\;n{\geq}1}$ have gamma distribution.

  • PDF

CHARACTERIZATIONS OF GAMMA DISTRIBUTION

  • Lee, Min-Young;Lim, Eun-Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.411-418
    • /
    • 2007
  • Let $X_1$, ${\cdots}$, $X_n$ be nondegenerate and positive independent identically distributed(i.i.d.) random variables with common absolutely continuous distribution function F(x) and $E(X^2)$ < ${\infty}$. The random variables $X_1+{\cdots}+X_n$ and $\frac{X_1+{\cdots}+X_m}{X_1+{\cdots}+X_n}$are independent for 1 $1{\leq}$ m < n if and only if $X_1$, ${\cdots}$, $X_n$ have gamma distribution.

  • PDF

CHARACTERIZATIONS OF THE GAMMA DISTRIBUTION BY INDEPENDENCE PROPERTY OF RANDOM VARIABLES

  • Jin, Hyun-Woo;Lee, Min-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • Let {$X_i$, $1{\leq}i{\leq}n$} be a sequence of i.i.d. sequence of positive random variables with common absolutely continuous cumulative distribution function F(x) and probability density function f(x) and $E(X^2)$ < ${\infty}$. The random variables X + Y and $\frac{(X-Y)^2}{(X+Y)^2}$ are independent if and only if X and Y have gamma distributions. In addition, the random variables $S_n$ and $\frac{\sum_{i=1}^{m}(X_i)^2}{(S_n)^2}$ with $S_n=\sum_{i=1}^{n}X_i$ are independent for $1{\leq}m$ < n if and only if $X_i$ has gamma distribution for $i=1,{\cdots},n$.