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Abstract

Cumulative residual Kullback-Leibler (CRKL) information is well defined on the em-
pirical distribution function (EDF) and allows us to construct a EDF-based goodness
of fit test statistic. However, we need to consider a scaled CRKL because CRKL is not
scale invariant. In this paper, we consider several criterions for estimating the scale
parameter in the scale CRKL and compare the performances of the estimated CRKL
in terms of both power and unbiasedness.
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1. Introduction

Kullback-Leibler (KL) information is defined for f(x) and g(x) being the reference distri-
bution as

KL(g : f) =

∫ ∞
−∞

g(x) log
g(x)

f(x)
dx.

KL information is nonnegative and the equality to zero holds iff f(x) = g(x). The sample
estimate of K(g : f) can be simply obtained as K(gn : fn), but are not attainable for
fn = dFn and gn = dGn where Fn and Gn are the empirical distribution functions.

Rao et al. (2004) introduced a cumulative residual entropy (CRE) as

CRE(F ) = −
∫ ∞
−∞

F̄ (x) log F̄ (x)dx

where F̄ is the survival function.
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Barapour and Rad (2012) suggested the cumulative residual KL information (CRKL)
for the nonnegative random variable, which is well-defined on the empirical distribution
function, as

CRKL(G : F ) =

∫ ∞
0

Ḡ(x) log
Ḡ(x)

F̄ (x)
dx+ E(X) − E(Y ).

CRKL is also nonnegative and has a characteristic property that the equality to 0 holds iff
F (x) = G(x). If we take G(x) and F (x) to be Fn(x) and Fθ(x), respectively, where Fn(x)
is the empirical distribution function and Fθ(x) is an assumed parametric distribution, the
CRKL can be written as follows:

CRKLθ = −
∫ ∞

0

F̄n(x) log F̄θ(x)dx+ Eθ(X) − x̄− CRE(Fn)

where

CRE(Fn) = −
n∑
i=0

n− i

n
log

n− i

n
(xi+1:n − xi:n).

While KL information is location and scale invariant, but CRKLθ is not scale invariant.
Hence, we need to consider the scaled CRKL. In estimating the parameters in KL informa-
tion, the minimum discrimination information (MDI) criterion (see Soofi, 2000) has been
considered along with maximum likelihood estimator. However, concerning the CRKL, we
need to first define the scaled CRKL and determine how to choose the parameter estimator.

In this paper, we introduce the scale adjustment parameter and consider the scaled CRKL
as

sCRKLλ,θ =
1

λ
CRKLθ,

where λ is a scale adjustment parameter and θ is a scale parameter.
sCRKLλ̂,θ̂ can be considered as a goodness of fit test statistic where λ̂ and θ̂ are appro-

priate parameter estimators. We consider combinations of several estimators and compare
the performances of the corresponding scaled CRKL’s with Monte Carlo simulation.

2. Scaled cumulative residual KL information

It is well-known that KL(g : f) is nonnegative and has the characterization property that
the equality to zero holds iff g(x) = f(x) almost everywhere. Some extensions of KL infor-
mation have been studied by some authors including Park (2012), Park and Shin (2013) for
the Type I censored distribution and Balakrishnan et al. (2007) for the Type II progressively
censored distribution. Barapour and Rad (2012) recently suggested a cumulative residual
KL information, an extension of KL information to the survival function, as

CRKL(G : F ) =

∫ ∞
0

Ḡ(x)(
F̄ (x)

Ḡ(x)
− log

F̄ (x)

Ḡ(x)
dx− 1)dx. (2.1)

Since u− log u− 1 ≥ 0, we can see that CRKL is nonnegative and the equality to zero holds
iff F (x) = G(x) almost everywhere.
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For G(x) = Fn(x) and F (x) = Fθ(x) where Fn(x) is an empirical distribution function
and θ is a scale parameter of F (x), the CRKL can be written as

CRKLθ = −
∫ ∞

0

F̄n(x) log F̄θ(x)dx+ Eθ(X) − x̄− CRE(Fn).

However, because CRKLθ is not scale invariant, we need to consider a scaled CRKL.
We define the scaled CRKL as

sCRKLλ,θ =
1

λ
CRKLθ,

where λ is the scale adjustment parameter and θ is the scale parameter.
We note that sCRKLθ,θ has been considered in Baratpour (2012) and Park et al. (2012) but

they considered different parameter estimators. Park (2013) actually considered sCRKLx̄,x̄.
For an exponential distribution, fθ(x) = exp(−x/θ)/θ, sCRKLλ,θ can be written as

sCRKLλ,θ =
1

λ

(∑n
i=1 x

2
i /(2n)

θ
− CRE(Fn) + θ − x̄

)
.

Baratpour and Rad (2012) considered sCRKLθ̂1,θ̂1 where

θ̂1 =

∑n
i=1 x

2
i /(2n)

x̄
,

which satisfies the moment constraint, 2E(X2) = E(X)2.
Park et al. (2012) considered sCRKLθ̂2,θ̂2 where

θ̂2 =
2
∑n
i=1 x

2
i /(2n)

x̄+ CRE(Fn)
,

which minimizes sCRKLθ,θ (the minimum discriminant information (MDI) estimator; Soofi,
2000).

Here we consider four estimators for θ as

1. e1 = x̄

2. e2 =

√∑n
i=1 x

2
i

2n

3. e3 =
∑n

i=1 x
2
i /(2n)

x̄

4. e4 =
2
∑n

i=1 x
2
i /(2n)

x̄+CRE(Fn) .

The first one is the sample mean which is known to the best estimator. The second one is the
method of moment estimator based on the second moment, which also minimizes CRKLθ.
The third one is the estimator considered in Baratpour and Rad (2012), and the fourth one
is the estimator considered in Park et al. (2012).

In Table 1, we tabulate the bias and MSE of each estimator based on 100,000 Monte Carlo
simulated samples of size 20. We can confirm that e1 shows the best performance and e3

shows the worst performance.
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Table 2.1 Bias and MSE for the chosen estimators under
the standard exponential distribution ; n=20

θ̂ Bias MSE
e1 0.0009 0.0498
e2 0.0295 0.0555
e3 0.0492 0.0808
e4 0.0041 0.0601

3. Power comparisons and unbiasedness

We will consider sixteen combinations, sCRKLλ̂,θ̂, which include the test statistics in

Barapour and Rad (2012), and Park et al. (2012). The critical values of sixteen test statistics
for a sample of size 20 are obtained with the Monte Carlo simulation, where the simulation
size is 100000, and are tabulated in Table 2. We note that the critical values of sCRKLei,e1
and sCRKLei,e3 for i = 1, · · · , 4 are same because CRKLe1 = CRKLe3 . The critical value

of sCRKLei,θ̂ for given ei is naturally minimized at θ̂ = e2 because e2 minimizes CRKLθ.

The critical value of sCRKLθ̂,θ̂ is naturally minimized at θ̂ = e4.

Table 3.1 Critical values of test statistics for α = 0.05 ; n=20

λ̂/θ̂ e1 e2 e3 e4
e1 0.1398 0.1153 0.1398 0.1189
e2 0.1484 0.1210 0.1484 0.1249
e3 0.1612 0.1309 0.1612 0.1351
e4 0.1396 0.1137 0.1396 0.1174

We obtain the powers against gamma and Weibull alternatives with the shape parameter
values, 0.5 (decreasing failure rate) and 2 (increasing failure rate), lognormal alternative, and
chi-square alternatives with df=1 and 4, for a sample of size 20. The results are summarized
in Table 3. As we already noted, the powers of sCRKLei,e1 and sCRKLei,e3 for i = 1, 2, 3, 4
are same. We also need to note that the powers of sCRKLei,ej ’s for i, j = 2, 4 are same
because they are based on the same statistic 2

∑n
i=1 x

2
i /(2n)/(x̄+ CRE(Fn)).

As we can see from Table 3, the powers vary much according to the combination of
parameter estimators. sCRKLe1,e1 shows best powers against alternatives with decreasing
failure rate, while sCRKLe3,e1 shows best powers against alternatives with increasing failure
rate. Though e3 show poor performances as a point estimator, sCRKL estimated with e3

shows good performances.

Table 3.2 Power estimates under 7 alternatives (α = 0.05) ; n=20

Alternatives (e1, e1) (e1, e2) (e1, e4) (e2, e1) (e2, e2) (e3, e1) (e3, e2) (e3, e4) (e4, e1)
W(0.5) 0.7819 0.7365 0.7339 0.6937 0.5999 0.5385 0.3392 0.3524 0.6979
W(2) 0.7675 0.6407 0.6487 0.8731 0.8056 0.9178 0.8804 0.8788 0.8759
G(0.5) 0.3538 0.3096 0.3067 0.2552 0.1903 0.1385 0.0641 0.0688 0.2581
G(2) 0.2110 0.1480 0.1521 0.3154 0.2565 0.3895 0.3392 0.3368 0.3188

LN(0,1) 0.3497 0.3074 0.3045 0.2531 0.1889 0.1372 0.0647 0.0693 0.2564
χ2
1 0.2149 0.1505 0.1546 0.3184 0.2605 0.3912 0.3429 0.3405 0.3218
χ2
4 0.1929 0.1923 0.1917 0.1677 0.1603 0.1309 0.1139 0.1159 0.1675

Next, we consider some local alternatives to check whether the test statistics are unbiased
or not. We consider gamma and Weibull alternatives with shape parameter values 0.9 and
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1.1 and obtain the powers under the alternatives for a sample of size 20 where the simu-
lation size is 100,000. If the estimated power is below the significance level 5 %, we can
suspect the unbiasedness. The results are tabulated in Table 4. In Table 4, we can see that
sCRKLe1,e1 , sCRKLe3,e1 tend to be biased, while the p-values of sCRKLe2,e1 , sCRKLe2,e2
and sCRKLe4,e1 are above 5 % against all local alternatives. Among these three test statis-
tics, sCRKLe4,e1 shows best performance, though sCRKLe4,e4 (sCRKLe2,e2) is based on
minimizing sCRKLθ,θ. In comparing test statistics, the unbiasedness property should be
considered along with the power, which has been neglected in lots of past works.

Table 3.3 Power estimates under some local alternatives (α = 0.05) ; n=20

Alternatives (e1, e1) (e1, e2) (e1, e4) (e2, e1) (e2, e2) (e3, e1) (e3, e2) (e3, e4) (e4, e1)
W(0.9) 0.0927 0.0884 0.0876 0.0685 0.0622 0.0437 0.0377 0.0383 0.0689
W(1.1) 0.0488 0.0449 0.0455 0.0697 0.0674 0.0869 0.0857 0.0851 0.0698
G(0.9) 0.0640 0.0634 0.0631 0.0526 0.0507 0.0407 0.0398 0.0399 0.0526
G(1.1) 0.0474 0.0459 0.0462 0.0567 0.0559 0.0646 0.0648 0.0644 0.0568

4. Conclusion

In this paper, we considered some estimates of the scaled CRKL and study the performance
as a goodness of the fit test statistic for an exponential distribution, which include the test
statistics in Barapour and Rad (2012), and Park et al. (2012). As a result, we found that
the performance of the sCRKL test statistic varies much according to the chosen parameter
estimators. The sCRKL test statistics plugged in with e3 shows good performance, though
e3 shows poor performance as a point estimator. However, those test statistics tend to be
biased against some local alternatives, which supports the usual convention that the MDI
principle is considered in estimating the parameter in KL information. Then the similar
discussion may be done for the Kolmogorov-Smirnov type goodness of fit test statistic.
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