• 제목/요약/키워드: a sliding control

검색결과 1,544건 처리시간 0.029초

Sliding Mode Control Based DTC of Sensorless Parallel-Connected Two Five-Phase PMSM Drive System

  • Kamel, Tounsi;Abdelkader, Djahbar;Said, Barkat;Al-Hitmi, M.;Iqbal, Atif
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1185-1201
    • /
    • 2018
  • This paper presents a sensorless direct torque control (DTC) combined with sliding mode approach (SM) and space vector modulation (SVM) to achieve mainly a high performance and reduce torque and flux ripples of a parallel-connected two five-phase permanent magnet synchronous machine (PMSM) drive system. In order to increase the proposed drive robustness and decrease its complexity and cost, the rotor speeds, rotor positions, fluxes as well as torques are estimated by using a sliding mode observer (SMO) scheme. The effectiveness of the proposed sliding mode observer in conjunction with the sliding mode control based DTC is confirmed through the application of different load torques for wide speed range operation. Comparison between sliding mode control and proportional integral (PI) control based DTC of the proposed two-motor drive is provided. The obtained speeds, torques and fluxes responses follow their references; even in low and reverse speed operations, load torques changes, and machines parameters variations. Simulation results confirm also that, the ripples of the torques and fluxes are reduced more than 3.33% and 16.66 %, respectively, and the speed overshoots and speed drops are reduced about 99.85% and 92.24%, respectively.

Sliding Mode Control with Friction Observer for a Precise Mechanical System in the Presence of Nonlinear Dynamic Friction

  • Han, Seong-Ik
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.296-304
    • /
    • 2002
  • A position tracking control schemes on the precise mechanical system in presence of nonlinear dynamic friction is proposed. A nonlinear dynamic friction is regarded as the bristle friction model to compensate effects of friction. The conventional sliding mode controller often has been used as a non-model-based friction controller, but it has a poor tracking performance in high-precision position tracking application since it completely cannot compensate the friction effect below a certain precision level. Thus to improve the precise position tracking performance, we propose the sliding mode control method combined with the friction-model-based observer having tunable structure of the transient response. Then this control scheme has a good transient response as well as the high precise tracking performance compared with the conventional sliding mode control without observer and the control system with similar type of observer. The experiments on the bali-screw drive table with the nonlinear dynamic friction show the feasibility of the proposed control scheme.

유압식 인버터 제어기의 속도제어를 위한 퍼지기반 하이브리드 슬라이딩모드 제어기 설계 (Fuzzy-based Hybrid Fuzzy-Sliding Mode Controller for the Speed Control of a Hydraulic Inverter Controller)

  • 한권상;최병욱;안현식;김도현
    • 제어로봇시스템학회논문지
    • /
    • 제9권3호
    • /
    • pp.218-226
    • /
    • 2003
  • Due to the friction characteristics of pump, cylinder packing and passenger car, in the elevation system actuated with hydraulic inverter, there exist dead zones. which cannot be controlled by a PID controller. To overcome the drawbacks, in this paper, we propose a new hybrid fuzzy-sliding mode control scheme, which controls the controller output between a sliding mode control output and a PID control output by fuzzy control method. The proposed hybrid control scheme achieves an improved control performance by using both controllers. We first propose a design method of the hybrid controller far a hydraulic system controlled by inverters, then propose a design method of a hybrid fuzzy-sliding mode centre] scheme. The effectiveness of the proposed control scheme is shown by simulation results, in which the proposed hybrid control method yields better control performance then the PID controlled scheme, not only in the zero-crossing speed region but also in the overall control region including steady-state region.

Discrete-Time Sliding Mode Control for Linear Systems with Matching Uncertainties

  • Myoen, Kohei;Hikita, Hiromitsu;Hanajima, Naohiko;Yamashita, Mitsuhisa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.151.5-151
    • /
    • 2001
  • Sliding mode control is investigated for a discrete-time system with uncertainties. The narrowest neighborhood of the sliding surface is shown in which the state can remain. The range is determined by the upper bound of the absolute value of the uncertainty and the equation of the sliding surface. A sliding mode control algorithm is proposed to keep the state there without requiring an enormous input. Under the presence of the system parameter variations, the origin is not always stable although the sliding surface represents the stable dynamics and the state is kept in this neighborhood. The condition for the origin to be stable is investigated. Furthermore, the problems occurring when a continuous-time sliding mode control being ...

  • PDF

RLSN 예측기 기반 섭동 추정기를 갖는 슬라이딩 모드 제어 (Sliding Mode Control with RLSN Predictor-Based Perturbation Estimation)

  • 남윤주;이육형;박명관
    • 대한기계학회논문집A
    • /
    • 제30권8호
    • /
    • pp.880-888
    • /
    • 2006
  • This paper presents the sliding mode control with the perturbation estimator for a nonlinear control system in the presence of perturbations including external disturbances, unpredictable parameter variations, ana unstructured dynamics. The proposed perturbation estimator is based on the Recursive Linear Smoothed Newton predictive algorithm so that it is effective to attenuate an undesired noise in high frequency band and to predict the present perturbation signal from the previous ones. Compared to conventional sliding mode control (SMC) and sliding mode control with perturbation estimation (SMCPE) introduced by Elmali and Olgac, the control algorithm proposed in this study can offer better tracking control performances and more feasible estimation characteristics. The effectiveness and superiority of the proposed control strategy are demonstrated by a series of simulations on the position tracking control of a simple two-link robot manipulator subject to velocity feedback signals including white noises.

확장된 터미널 슬라이딩 모드 제어기의 설계 (Design of Extended Terminal Sliding Mode Control Systems)

  • 조영훈;이용화;박강박
    • 제어로봇시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.236-240
    • /
    • 2011
  • The terminal sliding mode control schemes have been studied a lot since they can guarantee that the state error gets to zero in a finite time. However, the conventional terminal sliding surfaces have been designed using power function whose exponent is a rational number between 0 and 1, and whose numerator and denominator should be odd integers. It is clearly restrictive. Thus, in this paper, we propose a novel terminal sliding surface using power function whose exponent can be a real number between 0 and 1.

Fuzzy Sliding Mode Control for Uncertain Nonlinear Systems Using Fuzzy Models

  • Seo, Sam-Jun;Kim, Dong-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1262-1266
    • /
    • 2003
  • Fuzzy sliding mode controller for a class of uncertain nonlinear dynamical systems is proposed and analyzed. The controller's construction and its analysis involve sliding modes. The proposed controller consists of two components. Sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum. The results show that both alleviation of chattering and performance are achieved.

  • PDF

모델 불확실성에 대한 외란 관측기를 가진 차량 ABS의 슬라이딩 모드 제어 (Sliding Mode Control of the Vehicle ABS with a Disturbance Observer for Model Uncertainties)

  • 황진권;송철기
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.44-51
    • /
    • 2006
  • This paper addresses sliding mode control of the anti-lock braking system (ABS) with a disturbance observer for model uncertainties such as vehicle parameter variation, un-modeled dynamics, and external disturbances. By using a nominal vehicle model, a sliding mode controller is designed to achieve a desired wheel slip ratio for ABS control. To compensate the model uncertainties, a disturbance observer is introduced with the help of a transfer function of a hydraulic brake dynamics. A proposed sliding mode controller with a disturbance observer is evaluated through simulations for model uncertainties. The simulation results show that the disturbance observer can enhance performances of sliding mode control for ABS.

3단 비간섭 슬라이딩모드 제어 (Three-Level Decoupled Sliding Mode Control)

  • ;장성동;신화범
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권8호
    • /
    • pp.467-472
    • /
    • 2000
  • A three-level decoupled sliding mode controller is developed to achieve asymptotic stability for a class of sixth-order nonlinear systems. The sixth-order system is decoupled into three subsystems according to the structure of the whole system. Each subsystem has a separate control target in the form of a sliding surface. The information of the third sliding surface is transferred to the second one through an intermediate variable and the information of the second sliding surface is transferred to the first one through another intermediate variable. Consequently, the controller designed on the basis of the first sliding surface can make three subsystems move toward their sliding surfaces, respectively. The three-level decoupled sliding mode controller is applied to the double-inverted pendulum problem where the zero stable states are required.

  • PDF

Disturbance observer based adaptive sliding mode control for power tracking of PWRs

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2522-2534
    • /
    • 2020
  • It is well known that the model of nuclear reactors features natural nonlinearity, and variable parameters during power tracking operation. In this paper, a disturbance observer-based adaptive sliding mode control (DOB-ASMC) strategy is proposed for power tracking of the pressurized-water reactor (PWR) in the presence of lumped disturbances. The nuclear reactor model is firstly established based on point-reactor kinetics equations with six delayed neutron groups. Then, a new sliding mode disturbance observer is designed to estimate the lumped disturbance, and its stability is discussed. On the basis of the developed DOB, an adaptive sliding mode control scheme is proposed, which is a combination of backstepping technique and integral sliding mode control approach. In addition, an adaptive law is introduced to enhance the robustness of a PWR with disturbances. The asymptotic stability of the overall control system is verified by Lyapunov stability theory. Simulation results are provided to demonstrate that the proposed DOB-ASMC strategy has better power tracking performance than conventional sliding mode controller and PID control method as well as conventional backstepping controller.