• Title/Summary/Keyword: a rock-splitting method

Search Result 19, Processing Time 0.018 seconds

The Study of noise and vibration on application of the method breaking & excavating rock(Super wedge) (암파쇄굴착공법(Super wedge) 적용에 따른 소음.진동에 대한 고찰)

  • Won, Yeon-Ho;Kang, Choo-Won;Ryu, Chang-Ha
    • Proceedings of the KSEE Conference
    • /
    • 2006.10a
    • /
    • pp.167-184
    • /
    • 2006
  • There is cattle shed and house structure of a country village in the vicinity of the construction site. that is why the environmental effect evaluation on blasting had been done in advance to prevent any harm to those from the work. As the result, it is impossible to apply to the blasting method, and the Super wedge method, a kind of a rock-splitting method which there is no secondary breaking by a breaker of the methods breaking &excavating rock according to the classification of the blasting method by the ministry of construction & transpotation, applied to decrease noise and vibration, and to the work classification, the extent of noise and vibration measured with the instrument only for noise(SC-310c) and with the instrument only for vibration(BLASTMATE) respectively. A drilling, splitting, collecting, loading works at the closest point(about 10m) is barely possible on the consideration of vibration to the result of measurement, but carefulness needs on moving of equipment. On the case of noise, even drilling, collecting, loading work except splitting at the comparatively close point(about 20m) is difficult. So, the method breaking &excavating rock according to the classification of the blasting method by the ministry of construction & transpotation has to apply in consideration of noise level in accordance with the work processing.

  • PDF

Study on anchorage effect on fractured rock

  • Wang, Jing;Li, Shu-Cai;Li, Li-Ping;Zhu, Weishen;Zhang, Qian-Qing;Song, Shu-Guang
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.791-801
    • /
    • 2014
  • The effects of anchor on fractured specimens in splitting test are simulated by DDARF method, the results of which are compared with laboratory test results. They agree well with each other. The paper contents also use the laboratory model test. The main research objects are three kinds of specimens, namely intact specimens, jointed specimens and anchored-jointed specimens. The results showed that with the joint angle increased, the weakening effects of jointed rock mass are more obvious. At these points, the rock bolts' strengthening effects on the specimens have become more significant. There is a significant impact on the failure modes of rock mass by the joint and the anchorage.

A Study on the Crack-propagation Mechanism of Pre-splitting Method with Consideration of Stress Field (응력장을 고려한 프리스플리팅 공법의 균열발생 원리에 대한 연구)

  • Yoon, Ji-Sun;Woo, Taek-Gyu;Kim, Min-Woo;Jang, Young-Min
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.1-11
    • /
    • 2009
  • Abstract By investigating the stress redistribution caused by the preceding cut blasting when applying the pre-splitting method to tunnel round, an attempt was made to find conditions that were favorable for the propagation of cracks in contour holes. The investigation of the direction of minor principal stress in the numerical analysis revealed that the most significant factor affecting the change of the direction was the loading condition, while the core shape, rock type, and tunnel depth seemed to be less important in determining the direction of minor principal stress. Moreover, the number of cracks tended to increase with the increase of deviatoric stress. Through the model test of pre-splitting, it is confirmed that the pre-splitting method taking the stress field into account can reduce the extent of yield zone and has advantage in controlling the direction of crack than the conventional one.

A Study on the Transmission Tower Foundation Design and Construction Method - A Focus of Cylindrical Foundation - (가공 송전 철탑기초 설계 및 시공 방법 연구 - 심형기초를 중심으로 -)

  • Jang, Suk-Han;Kim, Hee-Kwang;Lee, Kang-Hyeon;Han, Kyung-Soo;Ham, Bang-Wook;Chung, Ki-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1031-1034
    • /
    • 2007
  • Electric transmission lines pass through a variety of area. Foundation supporting the conductors and tower are selected properly in accordance with external load, for example dead load, wind load, snow load, construction load etc, and topography and geology condition. Typical types of foundation are as follows: pad foundation for small load and hard soil or rock in mountainous area, pile foundation for medium or large load and soft soil in plain field area. This paper introduced cylindrical foundation design & construction for large load and mountainous area. This foundation failure mode against pulling-out show splitting failure by tensile force toward circumferential direction.

A study on the utilization of abrasive waterjet for mechanical excavation of hard rock in vertical shaft construction (고강도 암반에서 수직구 기계굴착을 위한 연마재 워터젯 활용에 관한 연구)

  • Seon-Ah Jo;Ju-Hwan Jung;Hee-Hwan Ryu;Jun-Sik Park;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.357-371
    • /
    • 2023
  • In cable tunnel construction using TBM, the vertical shaft is an essential structure for entrance and exit of TBM equipment and power lines. Since a shaft penetrates the ground vertically, it often encounters rock mass. Blasting or rock splitting methods, which are mainly used to the rock excavation, cause public complaints due to the noise, vibration and road occupation. Therefore, mechanical excavation using vertical shaft excavation machine are considered as an alternative to the conventional methods. However, at the current level of technology, the vertical excavation machine has limitation in its performance when applied for high strength rock with a compressive strength of more than 120 MPa. In this study, the potential utilization of waterjet technology as an excavation assistance method was investigated to improve mechanical excavation performance in the hard rock formations. Rock cutting experiments were conducted to verify the cutting performance of the abrasive waterjet. Based on the experimental result, it was found that ensuring excavation performance with respect to changing in ground conditions can be achieved by adjusting waterjet parameters such as standoff distance, traverse speed and water pressure. In addition, based on the relationship between excavation performance, uniaxial compressive strength and RQD, it was suggested that excavation performance could be improved by artificially creating joints using the abrasive waterjet. It is expected that these research results can be utilized as fundamental data for the introduction of vertical shaft excavation machines in the future.

Case study on the Distributed Multi-stage Blasting using Stemming-Help Plastic Sheet and Programmable Sequential Blasting Machine (전색보호판과 다단발파기를 이용한 다단식분산발파의 현장 적용 사례)

  • Kim, Se-Won;Lim, Ick-Hwan;Kim, Jae-Sung
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.14-24
    • /
    • 2013
  • The most effective way of the rock removing works in the downtown area is to removing rocks by splitting the rock by blasting with small amount of explosives in the hole. However environmental factors not only limit the applications but also increase the forbidden area. As this is a distributed multi-stage blasting method and to reduce vibration by applying the optimized precisioncontrol-blasting method, it is applicable in all situations. The process is to fix the stemming-help plastic sheet to the hole entrance when stemming explosives and insert detonator and explosive primer with same delay time, two or three sets. This method is more efficient in the downtown area where claims and dispute from vibration are expected. This method is easily usable by designing blast pattern even in the area where delay time blasting is difficult after multi-stage explosive stemming due to short length of blast hole (1.2~3.0m) and there is no detonator wire shortage or dead-pressure.

ROBUST AND ACCURATE METHOD FOR THE BLACK-SCHOLES EQUATIONS WITH PAYOFF-CONSISTENT EXTRAPOLATION

  • CHOI, YONGHO;JEONG, DARAE;KIM, JUNSEOK;KIM, YOUNG ROCK;LEE, SEUNGGYU;SEO, SEUNGSUK;YOO, MINHYUN
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.297-311
    • /
    • 2015
  • We present a robust and accurate boundary condition for pricing financial options that is a hybrid combination of the payoff-consistent extrapolation and the Dirichlet boundary conditions. The payoff-consistent extrapolation is an extrapolation which is based on the payoff profile. We apply the new hybrid boundary condition to the multi-dimensional Black-Scholes equations with a high correlation. Correlation terms in mixed derivatives make it more difficult to get stable numerical solutions. However, the proposed new boundary treatments guarantee the stability of the numerical solution with high correlation. To verify the excellence of the new boundary condition, we have several numerical tests such as higher dimensional problem and exotic option with nonlinear payoff. The numerical results demonstrate the robustness and accuracy of the proposed numerical scheme.

A Study on the Vibration Propagation Characteristics of Controlled Blasting Methods and Explosives in Tunnelling (터널 제어발파 공법 및 화약류의 진동전달 특성에 관한 연구)

  • Jung, Hyuksang;Jung, Kyoungsik;Mun, Hongnyeon;Chun, Byungsik;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.2
    • /
    • pp.5-14
    • /
    • 2011
  • The most common problem encountered in domestic tunnel construction sites are solving public resentments caused by damage to adjacent structures and buildings. The most effective excavation method in rock tunnelling is the drilling and blasting, which is the main cause of vibration resulting in the public resentments. In this study, numerical analysis is conducted to compare the vibration reduction effect of line drilling and pre-splitting methods. Furthermore, the numerical simulations are verified and the results are quantified. Finally, various combinations of explosives used in controlled blasting are used and the vibration reduction effects are evaluated, thereby proving the applicability of the controlled blasting for reduction of vibration in tunnelling.

A Case Study of Electronic-blasting, Railroad Tunnel to Pass under Existing Highway (기존 고속도로 하부 통과를 위한 철도터널 전자발파 시공사례)

  • Kim, Gab-Soo;Son, Young-Bok;Kim, Jae-Hoon
    • Explosives and Blasting
    • /
    • v.32 no.2
    • /
    • pp.16-24
    • /
    • 2014
  • In this "Wonju~Jaecheon double-lanes railroad" project, a highway is located at about 13meter above a tunnel. Initially, rock-splitting method was used for the tunnel excavation in order to minimize the possible damage on the highway. The method, however, takes a long time for the tunnel excavation and that may cause other problems like large displacement of tunnel and subsidence of highway ground before the tunnel can be stabilized by supporters. Therefore, the application of electronic blasting method(eDdevII) was recommended to control the blast vibration below 1.0cm/sec as well as to prevent the subsidence of highway ground. The analysis of the influence of tunnel excavation on the highway showed that electric blasting method is permissible for the safe management of the highway. Based on that, the tunnel construction under a highway could be carried out quickly and safely without any damages on the highway.