ROBUST AND ACCURATE METHOD FOR THE BLACK-SCHOLES EQUATIONS WITH PAYOFF-CONSISTENT EXTRAPOLATION |
CHOI, YONGHO
(Department of Mathematics Korea University)
JEONG, DARAE (Department of Mathematics Korea University) KIM, JUNSEOK (Department of Mathematics Korea University) KIM, YOUNG ROCK (Major in Mathematics Education Hankuk University of Foreign Studies) LEE, SEUNGGYU (Department of Mathematics Korea University) SEO, SEUNGSUK (Garam Analytics) YOO, MINHYUN (Department of Financial Engineering Korea University) |
1 | Z. Cen, A. Le, and A. Xu, Finite difference scheme with a moving mesh for pricing Asian options, Appl. Math. Comput. 219 (2013), no. 16, 8667-8675. DOI ScienceOn |
2 | D. J. Duffy, Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach, John Wiley and Sons, 2006. |
3 | A. Esser, General valuation principles for arbitrary payoffs and applications to power options under stochastic volatility, Financ. Markets and Portfolio Manage. 17 (2003), no. 3, 351-372. DOI |
4 | A. Golbabai, L. V. Ballestra, and D. Ahmadian, A Highly Accurate Finite Element Method to Price Discrete Double Barrier Options, Comput. Econ. (2013), 1-21. |
5 | E. G. Haug, The Complete Guide to Option Pricing Formulas, McGraw-Hill, New York, 1998. |
6 | R. C. Heynen and H. M. Kat, Pricing and hedging power options, Financ. Eng. JPN. Markets 3 (1996), no. 3, 253-261. DOI |
7 | S. Ikonen and J. Toivanen, Operator splitting methods for American option pricing, Appl. Math. Lett. 17 (2004), no. 7, 809-814. DOI ScienceOn |
8 | K. J. In't Hout and S. Foulon, ADI finite difference schemes for option pricing in the Heston model with correlation, Int. J. Numer. Anal. Model 7 (2010), no. 2, 303-320. |
9 | A. Q. M. Khaliq, D. A. Voss, and K. Kazmi, Adaptive -methods for pricing American options, J. Comput. Appl. Math. 222 (2008), no. 1, 210-227. DOI ScienceOn |
10 | G. Linde, J. Persson, and L. Von Sydow, A highly accurate adaptive finite difference solver for the Black-Scholes equation, Int. J. Comput. Math. 86 (2009), no. 12, 2104-2121. DOI ScienceOn |
11 | MathWorks, Inc.,MATLAB: the language of technical computing, http://www.mathworks.com/, The MathWorks, Natick, MA., 1998. |
12 | C. Reisinger and G. Wittum, On multigrid for anisotropic equations and variational inequalities Pricing multi-dimensional European and American options, Comput. Vis. Sci. 7 (2004), no. 3-4, 189-197. DOI |
13 | A. Tagliani and M. Milev, Laplace Transform and finite difference methods for the Black-Scholes equation, Appl. Math. Comput. 220 (2013), 649-658. DOI ScienceOn |
14 | P. G. Zhang, Exotic Options: a Guide to Second Generation Options, World Scientific, Singapore, 1998. |
15 | R. Zvan, K. R. Vetzal, and P. A. Forsyth, PDE methods for pricing barrier options, J. Econom. Dynam. Control 24 (2000), no. 11, 1563-1590. DOI ScienceOn |
16 | N. Zheng and J. F. Yin, On the convergence of projected triangular decomposition methods for pricing American options with stochastic volatility, Appl. Math. Comput. 223 (2013), 411-422. DOI ScienceOn |