• Title/Summary/Keyword: a real-time analysis

Search Result 6,032, Processing Time 0.033 seconds

Real-time Dynamic Simulation Using Multibody Vehicle Model (다물체 차량모델을 이용한 실시간 동역학 시뮬레이션)

  • Choe, Gyu-Jae;No, Gi-Han;Yu, Yeong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.486-494
    • /
    • 2001
  • This paper presents a real-time multibody vehicle dynamic analysis method using recursive Kanes formulation and suspension composite joints. To shorten the computation time of simulation, relative coordinate system is used and the equations of motion are derived using recursive Kanes formulation. Typical suspension systems of vehicles such as MacPherson strut suspension system is modeled by suspension composite joints. The joints are derived and utilized to reduce the computation time of simulation without any degradation of kinematical accuracy of the suspension systems. Using the develop program, a multibody vehicle dynamic model is formed and simulations are performed. Accuracy of the simulation results is compared to the real vehicle field test results. It is found that the simulation results using the proposed method are very accurate and real-time simulation is achieved on a computer with single PowerPC 604 processor.

Implementation of Music Embedded System Software Using Real Time Software Analysis and Design Method (실시간 소프트웨어 분석 및 설계 기법을 이용한 뮤직 임베디드시스템 소프트웨어의 구현)

  • Choi, Seong-Min;Oh, Hoon
    • The KIPS Transactions:PartD
    • /
    • v.15D no.2
    • /
    • pp.213-222
    • /
    • 2008
  • The existing approaches for the music application have not considered a real-time multi-tasking model. So, it suffers from a high complexity and a low flexibility in design as well as lack of predictability for the timely execution of critical tasks. In this paper, we design a new concurrent tasking architecture for a real-time embedded music system and examine if all real-time tasks can finish execution within their respective time constraints. The design is implemented on the Linux based Xhyper272 Board that uses the Intel Bulverde microprocessor.

A co-simulation study on a control system with the matlab toolbox for OSEK-OS (OSEK-OS를 위한 Matlab 도구상자와 제어시스템의 연계 모의실험에 관한 연구)

  • Kim, Seung-Hoon;SunWoo, Myoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.149-151
    • /
    • 2001
  • In real-time control system, it is essential to confirm the timing behavior of all tasks because these tasks of real-time controller have to finish their processes within the specified time intervals called a deadline. In order to satisfy this objective, the timing analysis of a real-time system such as a schedulability test must be performed during the system design phase. This paper presents a Matlab toolbox for simulation of real-time control system based on OSEK-OS, which is one of the most widely adopted real-time operating systems in automotive industry. The toolbox allows the user to explore the timely behavior of control algorithms, and to study the interaction between the object of the OSEK-OS, such as task, scheduler and resource etc.

  • PDF

A Specifying Method for Real-Time Software Requirement

  • Kim, Jung-Sool
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 1999
  • This paper is on the analysis for the real-time software requirement. This method can be used for TNPN(Timed Numerical Peri Net) as a easy communication means with real-users. It is based on the RTTL(Real Time Temporal Logic) for correctness the system. TNPN is used to represent a behavior specification language, the validity of specified behaviors in TNPN is expressed in RTTL, and analyzed through the teachability graph. Thus, the requirement between user and system is satisfied Using the example of shared track, the validity of the property of real-time(safetiness, responsiveness, liveness, priority) is verified. Also this framework if given to connection with a object, natually.

  • PDF

A Study on the Distributed Real-time Mobile Robot System using TCP/IP and Linux (Linux와 TCP/IP를 이용한 분산 실시간 이동로봇 시스템 구현에 관한 연구)

  • 김주민;김홍렬;양광웅;김대원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.789-797
    • /
    • 2003
  • An implementation scheme and some improvements are proposed to adopt public-licensed operating system, Linux and de-facto world-wide network standard, TCP/IP into the field of behavior-based autonomous mobile robots. To demonstrate the needs of scheme and the improvement, an analysis is performed on a server/client communication problem with real time Linux previously proposed, and another analysis is also performed on interactions among TCP/IP communications and the performance of Linux system using them. Implementation of behavior-based control architecture on real time Linux is proposed firstly. Revised task-scheduling schemes are proposed that can enhance the performance of server/client communication among local tasks on a Linux platform. A new method of TCP/IP packet flow handling is proposed that prioritizes TCP/IP software interrupts with aperiodic server mechanism as well. To evaluate the implementation scheme and the proposed improvements, performance enhancements are shown through some simulations.

A derivation of real-time simulation model on the large-structure driving system and its application to the analysis of system interface characteristics (대형구조물 구동계통 실시간 시뮬레이션 모델 유도 및 연동 특성 분석에의 응용)

  • Kim, Jae-Hun;Choi, Young-Ho;Yoo, Woong-Jae;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.13-25
    • /
    • 2000
  • A simulation model is developed to analyze the large-structure driving system and its integrated behavior in the whole weapon system. It models every component in the driving system such as mechanical and electrical characteristics, and it is programmed by simulation language in a way which strongly reflects the system's real time dynamics and reduces computation time as well. A useful parameter identification method is proposed, and it is tuned on the given physical system. The model is validated through comparing to real test, and it is applied to analysis and prediction of integrated system functions relating to the fire control system.

  • PDF

Real Options and Strategic Decision Analysis (실물 옵션과 전략적 의사 결정)

  • Kim, Ki-Hong;Oh, Hyung-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.221-226
    • /
    • 2007
  • This paper suggests a valuation framework of investment project using the concept of real options. We show the valuation process of real assets using the risk-neutral pricing. Especially, we focus on the investment lag. Real assets have investment lag in general. The decision time and the payment time are not identical. So the investment lag should be considered when valuing real assets for reality. We provide the valuation process for real assets, including R&D project. The results of this paper can be used for the real assets valuation and strategic decision analysis.

Real-Time Sink Node Architecture for a Service Robot Based on Active Healthcare/Living-support USN (능동 건강/생활지원 USN 기반 서비스 로봇 시스템의 실시간 싱크 노드 구조)

  • Shin, Dong-Gwan;Yi, Soo-Yeong;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.720-725
    • /
    • 2008
  • This paper proposes a system architecture for USN with a service robot to provide more active assisted living services for elderly persons by monitoring their mental and physical well-being with USN environments at home, hospital, or silver town. Sensors embedded in USN are used to detect preventive measures for chronic disease. Logged data are transferred to main controller of a service robot via wireless channel in which the analysis of data is performed. For the purpose of handling emergency situations, it needs real-time processing on gathering variety sensor data, routing algorithms for sensor nodes to a moving sink node and processing of logged data. This paper realized multi-hop sensor network to detect user movements with biometric data transmission and performed algorithms on Xenomai, a real-time embedded Linux. To leverage active sensing, a mobile robot is used of which task was implemented with a priority to process urgent data came from the sink-node. This software architecture is anticipated to integrate sensing, communication and computing with real-time manner. In order to verify the usefulness of a proposed system, the performance of data transferring and processing on a real-time OS with non real-time OS is also evaluated.

Real-time Observation and Analysis of Solidification Sequence of Fe-Rich Al-Si-Cu Casting Alloy by Synchrotron X-ray Radiography (가속 방사광을 활용한 Fe함유 Al-Si-Cu 주조용 합금의 응고과정 실시간 관찰 및 분석)

  • Kim, Bong-Hwan;Lee, Sang-Hwan;Yasuda, Hideyuki;Lee, Sang-Mok
    • Journal of Korea Foundry Society
    • /
    • v.30 no.3
    • /
    • pp.100-110
    • /
    • 2010
  • The solidification sequence and formation of intermetallic phase of Fe-rich Al-Si-Cu alloy were investigated by using real-time imaging of synchrotron X-ray radiation. Effects of cooling rate during uni-directional solidification on the resultant solidification behavior was also studied in a specially constructed vacuum chamber in the SPring-8 facility. The series of radiographic images were complementarily analyzed with conventional analysis of OM and SEM/EDX for phase identification. Detailed solidification sequence and formation mechanisms of various phases were discussed based on real-time image analysis. The growth rates of $\alpha$-AlFeMnSi and ${\beta}-Al_5FeSi$ were measured in order to understand the growth behavior of each phase. It is suggested that real-time imaging technique can be a powerful tool for the precise understanding of solidification behavior of various industrial materials.

Data anomaly detection and Data fusion based on Incremental Principal Component Analysis in Fog Computing

  • Yu, Xue-Yong;Guo, Xin-Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.3989-4006
    • /
    • 2020
  • The intelligent agriculture monitoring is based on the perception and analysis of environmental data, which enables the monitoring of the production environment and the control of environmental regulation equipment. As the scale of the application continues to expand, a large amount of data will be generated from the perception layer and uploaded to the cloud service, which will bring challenges of insufficient bandwidth and processing capacity. A fog-based offline and real-time hybrid data analysis architecture was proposed in this paper, which combines offline and real-time analysis to enable real-time data processing on resource-constrained IoT devices. Furthermore, we propose a data process-ing algorithm based on the incremental principal component analysis, which can achieve data dimensionality reduction and update of principal components. We also introduce the concept of Squared Prediction Error (SPE) value and realize the abnormal detection of data through the combination of SPE value and data fusion algorithm. To ensure the accuracy and effectiveness of the algorithm, we design a regular-SPE hybrid model update strategy, which enables the principal component to be updated on demand when data anomalies are found. In addition, this strategy can significantly reduce resource consumption growth due to the data analysis architectures. Practical datasets-based simulations have confirmed that the proposed algorithm can perform data fusion and exception processing in real-time on resource-constrained devices; Our model update strategy can reduce the overall system resource consumption while ensuring the accuracy of the algorithm.