• 제목/요약/키워드: a posteriori error estimators

검색결과 11건 처리시간 0.024초

A POSTERIORI ERROR ESTIMATORS FOR THE STABILIZED LOW-ORDER FINITE ELEMENT DISCRETIZATION OF THE STOKES EQUATIONS BASED ON LOCAL PROBLEMS

  • KIM, KWANG-YEON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제21권4호
    • /
    • pp.203-214
    • /
    • 2017
  • In this paper we propose and analyze two a posteriori error estimators for the stabilized $P_1/P_1$ finite element discretization of the Stokes equations. These error estimators are computed by solving local Poisson or Stokes problems on elements of the underlying triangulation. We establish their asymptotic exactness with respect to the velocity error under certain conditions on the triangulation and the regularity of the exact solution.

HIERARCHICAL ERROR ESTIMATORS FOR LOWEST-ORDER MIXED FINITE ELEMENT METHODS

  • Kim, Kwang-Yeon
    • Korean Journal of Mathematics
    • /
    • 제22권3호
    • /
    • pp.429-441
    • /
    • 2014
  • In this work we study two a posteriori error estimators of hierarchical type for lowest-order mixed finite element methods. One estimator is computed by solving a global defect problem based on the splitting of the lowest-order Brezzi-Douglas-Marini space, and the other estimator is locally computable by applying the standard localization to the first estimator. We establish the reliability and efficiency of both estimators by comparing them with the standard residual estimator. In addition, it is shown that the error estimator based on the global defect problem is asymptotically exact under suitable conditions.

RECOVERY TYPE A POSTERIORI ERROR ESTIMATES IN FINITE ELEMENT METHODS

  • Zhang, Zhimin;Yan, Ningning
    • Journal of applied mathematics & informatics
    • /
    • 제8권2호
    • /
    • pp.327-343
    • /
    • 2001
  • This is a survey article on finite element a posteriori error estimates with an emphasize on gradient recovery type error estimators. As an example, the error estimator based on the ZZ patch recovery technique will be discussed in some detail.

SUPERCONVERGENCE AND POSTPROCESSING OF EQUILIBRATED FLUXES FOR QUADRATIC FINITE ELEMENTS

  • KWANG-YEON KIM
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제27권4호
    • /
    • pp.245-271
    • /
    • 2023
  • In this paper we discuss some recovery of H(div)-conforming flux approximations from the equilibrated fluxes of Ainsworth and Oden for quadratic finite element methods of second-order elliptic problems. Combined with the hypercircle method of Prager and Synge, these flux approximations lead to a posteriori error estimators which provide guaranteed upper bounds on the numerical error. Furthermore, we prove some superconvergence results for the flux approximations and asymptotic exactness for the error estimator under proper conditions on the triangulation and the exact solution. The results extend those of the previous paper for linear finite element methods.

RICHARDSON EXTRAPOLATION AND DEFECT CORRECTION OF MIXED FINITE ELEMENT METHODS FOR ELLIPTIC OPTIMAL CONTROL PROBLEMS

  • Chen, Yanping;Huang, Yunqing;Hou, Tianliang
    • 대한수학회지
    • /
    • 제49권3호
    • /
    • pp.549-569
    • /
    • 2012
  • In this paper asymptotic error expansions for mixed finite element approximations to a class of second order elliptic optimal control problems are derived under rectangular meshes, and the Richardson extrapolation of two different schemes and interpolation defect correction can be applied to increase the accuracy of the approximations. As a by-product, we illustrate that all the approximations of higher accuracy can be used to form a class of a posteriori error estimators of the mixed finite element method for optimal control problems.

A posteriori error estimator for hierarchical models for elastic bodies with thin domain

  • Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • 제8권5호
    • /
    • pp.513-529
    • /
    • 1999
  • A concept of hierarchical modeling, the newest modeling technology, has been introduced in early 1990's. This new technology has a great potential to advance the capabilities of current computational mechanics. A first step to implement this concept is to construct hierarchical models, a family of mathematical models sequentially connected by a key parameter of the problem under consideration and have different levels in modeling accuracy, and to investigate characteristics in their numerical simulation aspects. Among representative model problems to explore this concept are elastic structures such as beam-, arch-, plate- and shell-like structures because the mechanical behavior through the thickness can be approximated with sequential accuracy by varying the order of thickness polynomials in the displacement or stress fields. But, in the numerical, analysis of hierarchical models, two kinds of errors prevail, the modeling error and the numerical approximation error. To ensure numerical simulation quality, an accurate estimation of these two errors is definitely essential. Here, a local a posteriori error estimator for elastic structures with thin domain such as plate- and shell-like structures is derived using the element residuals and the flux balancing technique. This method guarantees upper bounds for the global error, and also provides accurate local error indicators for two types of errors, in the energy norm. Compared to the classical error estimators using the flux averaging technique, this shows considerably reliable and accurate effectivity indices. To illustrate the theoretical results and to verify the validity of the proposed error estimator, representative numerical examples are provided.

A POSTERIORI ERROR ESTIMATOR FOR HIERARCHICAL MODELS FOR ELASTIC BODIES WITH THIN DOMAIN

  • Cho, Jin-Rae;J. Tinsley Oden
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제3권1호
    • /
    • pp.16-33
    • /
    • 2002
  • A concept of hierarchical modeling, the newest modeling technology. has been introduced early In 1990. This nu technology has a goat potential to advance the capabilities of current computational mechanics. A first step to Implement this concept is to construct hierarchical models, a family of mathematical models which are sequentially connected by a key parameter of the problem under consideration and have different levels in modeling accuracy, and to investigate characteristics In their numerical simulation aspects. Among representative model problems to explore this concept are elastic structures such as beam-, arch-. plate- and shell-like structures because the mechanical behavior through the thickness can be approximated with sequential accuracy by varying the order of thickness polynomials in the displacement or stress fields. But, in the numerical analysis of hierarchical models, two kinds of errors prevail: the modeling error and the numerical approximation errors. To ensure numerical simulation quality, an accurate estimation of these two errors Is definitely essential. Here, a local a posteriori error estimator for elastic structures with thin domain such as plate- and shell-like structures Is derived using element residuals and flux balancing technique. This method guarantees upper bounds for the global error, and also provides accurate local error Indicators for two types of errors, in the energy norm. Comparing to the classical error estimators using flux averaging technique, this shows considerably reliable and accurate effectivity indices. To illustrate the theoretical results and to verify the validity of the proposed error estimator, representative numerical examples are provided.

  • PDF

ON THE ASYMPTOTIC EXACTNESS OF AN ERROR ESTIMATOR FOR THE LOWEST-ORDER RAVIART-THOMAS MIXED FINITE ELEMENT

  • Kim, Kwang-Yeon
    • Korean Journal of Mathematics
    • /
    • 제21권3호
    • /
    • pp.293-304
    • /
    • 2013
  • In this paper we analyze an error estimator for the lowest-order triangular Raviart-Thomas mixed finite element which is based on solution of local problems for the error. This estimator was proposed in [Alonso, Error estimators for a mixed method, Numer. Math. 74 (1996), 385{395] and has a similar concept to that of Bank and Weiser. We show that it is asymptotically exact for the Poisson equation if the underlying triangulations are uniform and the exact solution is regular enough.

다중 경로 시변 채널 환경에서 시공간 블록 부호 단일 반송파 시스템을 위한 가중치 블록 적응형 채널 추정 알고리즘 (A Weighted Block Adaptive Estimation for STBC Single-Carrier System in Frequency-Selective Time-Varying Channels)

  • 백종섭;권혁제;서종수
    • 한국통신학회논문지
    • /
    • 제32권3C호
    • /
    • pp.338-347
    • /
    • 2007
  • 본 논문에서는 순환 보호 구긴(cyclic-prefix)을 사용하는 시공간 블록 부호 (STBC: Space-Time Block-Coding) 단일 반송파 시스템에서 향상된 채널 성능을 위한 가중된 블록 적응형 주파수 영역 채널 추정기를 제안한다. 제안된 채널 추정기 구조는 필터 입력 신호에 대해 STBC로 구성된 블록을 형성하며, 이후 형성된 입력 블록에 대해 사후 오차 (a posteriori error)를 이용하는 가중된 LS (least-square) 규준을 적용하여 알고리즘을 유도한다. 또한 정적 채널에서 steady-state EMSE (excess mean-square error) 분석을 통해 블록 길이가 늘어남에 따라 EMSE를 분석한다. 전산 모의실험에서는 시변 TU (typical urban) 채널에서 블록 길이를 증가시킬수록 제안한 채널 추정기는 기존 NLMS와 RLS 채널 추정기들 보다 우수한 성능을 나타냄을 확인 할 수 있다.

Adaptive p-finite element method for wind engineering

  • Selvam, R. Panneer;Qu, Zu-Qing
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.301-316
    • /
    • 2002
  • An important goal of computational wind engineering is to impact the design process with simulations of flow around buildings and bridges. One challenging aspect of this goal is to solve the Navier-Stokes (NS) equations accurately. For the unsteady computations, an adaptive finite element technique may reduce the computer time and storage. The preliminary application of a p-version as well as an h-version adaptive technique to computational wind engineering has been reported in previous paper. The details on the implementation of p-adaptive technique will be discussed in this paper. In this technique, two posteriori error estimations, which are based on the velocity and vorticity, are first presented. Then, the polynomial order of the interpolation function is increased continuously element by element until the estimated error is less than the accepted. The second through sixth orders of hierarchical functions are used as the interpolation polynomials. Unequal order interpolations are used for velocity and pressure. Using the flow around a circular cylinder with Reynolds number of 1000 the two error estimators are compared. The result show that the estimated error based on the velocity is lower than that based on the vorticity.