• Title/Summary/Keyword: a optic fiber

Search Result 888, Processing Time 0.031 seconds

Development of Fiber Optic BOTDA Sensor (광섬유 BOTDA 센서의 개발)

  • 권일범;최만용;유재왕;백세종
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.4
    • /
    • pp.294-299
    • /
    • 2001
  • Recently great efforts and investment have been made in order to develop a structural health monitoring technology using fiber optic sensors. Therefore, in this study, we have focused on the development of a fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor system in order to measure strains distributed on large structures by an optical fiber. The fiber optic BOTDA sensor was constructed simply, with only two electro-optic modulators. The results of strain measurement tests of an optical fiber showed that the strain can be determined accurately from the Brillouin frequency shift measurement on the strain induced range of 10 m in the total fiber length of 4.8 kIn using 200 averaged signals. Also, the strain sensitivity of Samsung single mode fiber was 4.81 MHz/O.Ol % under the test. test.

  • PDF

SIMPLE EXTRINSIC FIBER OPTIC METHOD TO EVALUATE ABSORBANCE IN AQUEOUS NANOPARTICLE

  • Hanh, Nguyen Thi Kieu;Kulkarnib, Atul;Kim, T.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1723-1726
    • /
    • 2008
  • In recent years, there has been a remarkable progress in the development of the fiber optic sensors for the detection of various chemicals. Fiber optic sensors have the advantages of very small size, flexibility and low cost. The fiber optic sensors employing different optical or spectroscopic phenomena have been reported such as bulk absorption, optical reflectance, fluoresces and energy transfer. In this study, the effect of nanoparticle concentration in liquid upon light absorption and scattering was studied using extrinsic fiber optic method. For the evaluation, we used Red (650 nm) and Blue (430 nm) light sources which are coupled through the standard cuvette using optical fiber to detector. The experiments are carried out with Polystyrene latex (400 - 800 nm), and Silicon (35 - 110 nm) nanoparticles suspended in Isopropanol. Differences in light absorption and scattering depending on nanoparticle concentration and type are discussed. This method may be useful to study nanoparticles properties for various application and research.

  • PDF

Design of Distributed Fiber Optic Sensor Net for the Detection of External Sound Frequency (외부 음향 주파수 탐지를 위한 분포형 광섬유 센서망 설계)

  • 이종길
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.792-796
    • /
    • 2003
  • In this paper, to detect external sound frequency on the latticed structure, fiber optic sensor net using Sagnac interferometer was fabricated and tested. The latticed structure fabricated with dimension of 50cm in width and 50cm in height, the optical fiber, 50m in length, distributed and fixed on the latticed structure. Single mode fiber, a laser with 1,550nm in wavelength, 2${\times}$2 coupler were used. External sound signal applied to the fiber optic sensor net and the detected optical signals were compared and analyzed to the detected microphone signals against time and frequency domain. Based on the experimental results, fiber optic sensor net using Sagnac interferometer detected external sound frequency, effectively. This system can be expanded to the structural health monitoring system.

  • PDF

Application of a fiber optic TR-EEPI sensor to detect deformation and failure in composite materials (복합재료의 변형 및 파손탐지를 위한 광섬유 TR-EFPI 센서의 적용)

  • 박래영;권일범;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.31-34
    • /
    • 2002
  • A study on the method that can measure the internal strain of composite materials is performed to monitor the health status of composite structures. A fiber optic sensor was constructed using the total reflected extrinsic Fabry-Perot interferometer(TR-EFPI) probe with a broadband light source. Result obtained from electrical strain gage adhered on the aluminum beam specimen was compared with that from the fiber optic TR-EFPI sensor and showed a good agreement. It was found that fiber optic TR-EFPI sensor system was adequate for monitoring the strain and thus failure processes in the interior of composite materials.

  • PDF

Geometric moire fringe fiber optic accelerometer system for monitoring civil infrastructures (토목 구조물 건전성 평가를 위한 무아레 프린지 기법 광섬유 가속도계 시스템 개발)

  • Kim, Dae-Hyun;Feng, Maria Q.
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • This paper presents a novel fiber optic accelerometer system for monitoring vibration of large-size structures. The system is composed of one (or multiple) sensor head, a light control unit and a signal processing unit. The sensing mechanism of the sensor head is based on a novel integration of the moire fringe phenomenon with fiber optics to achieve a robust performance in addition to its immunity to EM interference, easy cabling, and low cost. In this paper, a prototype of the fiber optic accelerometer system has been developed successfully. A low-cost light control unit has been developed to drive the system's optic and electronic components. A unique algorithm has also been developed to derive the sensor's acceleration from the raw signals of the light control unit; it is implemented via a separate signal processing unit. Finally, the shaking table tests successfully demonstrate the performance and the potential of the moire fringe fiber optic sensor system to monitor the health of civil infrastructures.

All-Fiber Optic Gyroscope (전광파이버형 광파이버 자이로)

  • Kim, In-Soo S.;Kim, Yo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1840-1842
    • /
    • 1998
  • Gyroscope is a very important core sensor, as a rotation sensor in inertial space, in inertial guidance and navigation system on aeronautics, plane, vessel and so on for civilian and millitary applications. Mechnical gyroscopes, adopting a principle of spinning a top, have been used in many application system. These mechnical gyroscopes need high power consumption, long warming time and complicated peripheral devices. But fiber-optic gyroscopes, based on the Sagnac effect, have novel advantages as small volume. simple scheme, low power consumption and high reliability. So we have developed a Intermediate grade All-fiber Optic Gyroscope, which has open-loop and minimum reciprocal configuration scheme. We have designed feedback circuits for stability of amplitude and phase using four lock-in amplifier(LIA) circuits and also used for noise limitation. This paper describes the scheme of optical part and electronic part and also test results of this all-fiber optic gyroscope. The performance have been achieved as long-term bias drift of $9.54^{\circ}/h$, random walk of $0.0317^{\circ}/\sqrt{h}$ and dynamic range of ${\pm}150\;deg/s$.

  • PDF

Fiber Optic Interferometer Simulator (광섬유 간섭계 시뮬레이터)

  • Yang, Mun-Sang;Chong, Kyoung-Ho;Do, Jae-Chul;Lee, Young-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.411-414
    • /
    • 2008
  • The study is about simulation of optical circuit for oneself performance evaluation of Fiber Optic Gyro(FOG) closed-loop controller board. The Fiber Optic Interferometer Simulator is used a digital signal processing for cosine response specificity output of fiber optic coil about input rate. Response specificity of the fiber optic coil is $Vo(t)=K3[1+\cos\{K1(Vm(t)-Vm(t-{\tau}))+K2\}]$. Also the Fiber Optic Interferometer Simulator is able to confirm a output value with K1, K2 and K3 input. The fiber Optic Interferometer Simulator is able to oneself performance evaluation without fiber optical circuit. Because, it is the very same cosine response specificity of real fiber optic coil about input rate.

  • PDF

Fiber Optic Smart Monitoring of Railway Structures (광섬유센서를 이용한 철도구조물의 모니터링)

  • Kim, Ki-Soo;Cho, Sung-Gyu;Kim, Myeong-Se;Kim, Hak-Yeon;Seo, Ki-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.754-760
    • /
    • 2008
  • For monitoring of railway structures, optical fiber sensors are very convenient. The fiber sensors are very small and do not disturb the structural properties. They also have several merits such as electro-magnetic immunity, long signal transmission, good accuracy and multiplicity of one sensor line. Strain measurement technologies with fiber optic sensors have been investigated as a part of smart structure. In this paper, we investigated the possibilities of fiber optic sensor application to the monitoring of railway structures. We expect that the fiber optic sensors have much less noises than electrical strain gauges because of electro-magnetic immunity while railways operate electric power of 22000 volts. Fiber optic sensors showed good durability and long term stability for continuous monitoring of the railway structures as well as good response to the structural behaviors during construction.

  • PDF

Detection of Excited Vibration frequency on the Latticed Fence Structure Using a Distributed Fiber Optic Sensor (격자형 구조물의 외부 진동 주파수 탐지를 위한 분포형 광섬유 센서 설계 및 실험)

  • Lee, Jong-Kil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.234-237
    • /
    • 2002
  • To detect external vibration signals on the latticed fence structure, distributed fiber optic sensor using Sagnac interferometer was fabricated and tested. The latticed structure fabricated with dimension of 170cm in width and 180cm in height, the optical fiber, 50m in length, distributed and fixed on the latticed structure. It was verified the sensitivity of the Sagnac interferometer using the PZT phase modulator. Fiber optic external vibration signal spplied to the latticed fence structure from 100Hz to several kHz. The interferometeric fiber optic sensor detected the excited vibration signal very effectively without any signal processing. The detected optical signals were compared and analyzed to the detected acclerometer signals.

  • PDF

A study of the Engineering Education Method Using Fiber Optic Splicing Experiments (광섬유 접속기 실습을 통한 공학 교육 연구)

  • Lee, Seung-Hong;Lee, Jong-Kil
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.2 no.1
    • /
    • pp.42-46
    • /
    • 2010
  • One way of engineering education fiber optic splicing loss was introduced. To make high sensitivity fiber optic sensor it is required low loss of splicing. Hence in this paper splicing loss was selected in the experiments and the splicing loss was evaluated based on the engineering education. After trials in the experiments fiber optic splicing loss depended upon the experimental attitude and its environments.

  • PDF