• Title/Summary/Keyword: a linear theory

Search Result 2,012, Processing Time 0.03 seconds

A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates

  • Elmossouess, Bouchra;Kebdani, Said;Bouiadjra, Mohamed Bachir;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.401-415
    • /
    • 2017
  • A new higher shear deformation theory (HSDT) is presented for the thermal buckling behavior of functionally graded (FG) sandwich plates. It uses only four unknowns, which is even less than the first shear deformation theory (FSDT) and the conventional HSDTs. The theory considers a hyperbolic variation of transverse shear stress, respects the traction free boundary conditions and contrary to the conventional HSDTs, the present one presents a new displacement field which includes undetermined integral terms. Material characteristics and thermal expansion coefficient of the sandwich plate faces are considered to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are supposed as uniform, linear and non-linear temperature rises within the thickness direction. An energy based variational principle is used to derive the governing equations as an eigenvalue problem. The validation of the present work is carried out with the available results in the literature. Numerical results are presented to demonstrate the influences of variations of volume fraction index, length-thickness ratio, loading type and functionally graded layers thickness on nondimensional thermal buckling loads.

Impact of viscoelastic foundation on bending behavior of FG plate subjected to hygro-thermo-mechanical loads

  • Ismail M. Mudhaffar;Abdelbaki Chikh;Abdelouahed Tounsi;Mohammed A. Al-Osta;Mesfer M. Al-Zahrani;Salah U. Al-Dulaijan
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.167-180
    • /
    • 2023
  • This work applies a four-known quasi-3D shear deformation theory to investigate the bending behavior of a functionally graded plate resting on a viscoelastic foundation and subjected to hygro-thermo-mechanical loading. The theory utilizes a hyperbolic shape function to predict the transverse shear stress, and the transverse stretching effect of the plate is considered. The principle of virtual displacement is applied to obtain the governing differential equations, and the Navier method, which comprises an exponential term, is used to obtain the solution. Novel to the current study, the impact of the viscoelastic foundation model, which includes a time-dependent viscosity parameter in addition to Winkler's and Pasternak parameters, is carefully investigated. Numerical examples are presented to validate the theory. A parametric study is conducted to study the effect of the damping coefficient, the linear and nonlinear loadings, the power-law index, and the plate width-tothickness ratio on the plate bending response. The results show that the presence of the viscoelastic foundation causes an 18% decrease in the plate deflection and about a 10% increase in transverse shear stresses under both linear and nonlinear loading conditions. Additionally, nonlinear loading causes a one-and-a-half times increase in horizontal stresses and a nearly two-times increase in normal transverse stresses compared to linear loading. Based on the article's findings, it can be concluded that the viscosity effect plays a significant role in the bending response of plates in hygrothermal environments. Hence it shall be considered in the design.

A STUDY ON PREDICTION INTERVALS, FACTOR ANALYSIS MODELS AND HIGH-DIMENSIONAL EMPIRICAL LINEAR PREDICTION

  • Jee, Eun-Sook
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.377-386
    • /
    • 2004
  • A technique that provides prediction intervals based on a model called an empirical linear model is discussed. The technique, high-dimensional empirical linear prediction (HELP), involves principal component analysis, factor analysis and model selection. HELP can be viewed as a technique that provides prediction (and confidence) intervals based on a factor analysis models do not typically have justifiable theory due to nonidentifiability, we show that the intervals are justifiable asymptotically.

A POSTERIORI ERROR ESTIMATOR FOR LINEAR ELASTICITY BASED ON NONSYMMETRIC STRESS TENSOR APPROXIMATION

  • Kim, Kwang-Yeon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • In this paper we present an a posteriori error estimator for the stabilized P1 nonconforming finite element method of the linear elasticity problem based on a nonsymmetric H(div)-conforming approximation of the stress tensor in the first-order Raviart-Thomas space. By combining the equilibrated residual method and the hypercircle method, it is shown that the error estimator gives a fully computable upper bound on the actual error. Numerical results are provided to confirm the theory and illustrate the effectiveness of our error estimator.

Analytical and multicoupled methods for optimal steady-state thermoelectric solutions

  • Moreno-Navarro, Pablo;Perez-Aparicio, Jose L.;Gomez-Hernandez, J.J.
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.151-166
    • /
    • 2022
  • Peltier cells have low efficiency, but they are becoming attractive alternatives for affordable and environmentally clean cooling. In this line, the current article develops closed-form and semianalytical solutions to improve the temperature distribution of Bi2Te3 thermoelements. From the distribution, the main objective of the current work-the optimal electric intensity to maximize cooling-is inferred. The general one-dimensional differential coupled equation is integrated for linear and quadratic geometry of thermoelements, under temperature constant properties. For a general shape, a piece-wise solution based on heat flux continuity among virtual layers gives accurate analytical solutions. For variable properties, another piece-wise solution is developed but solved iteratively. Taking advantage of the formulae, the optimal intensity is directly derived with a minimal computational cost; its value will be of utility for more advanced designs. Finally, a parametric study including straight, two linear, barrel, hourglass and vase geometries is presented, drawing conclusions on how the shape of the thermoelement affects the coupled phenomena. A specially developed coupled and non-linear finite element research code is run taking into account all the materials of the cell and using symmetries and repetitions. These accurate results are used to validate the analytical ones.

Digital Redesign of Multiple Linear Systems by Using LMIs (LMI를 이용한 다중 선형 시스템의 디지탈 재설계)

  • Jang, Wook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.256-259
    • /
    • 2000
  • A new digital redesign method which can construct a digital controller for multiple linear systems is developed. The proposed method utilized the recently developed LMI theory to obtain a single digital controller which provide good state matching properties with multiple linear systems. A numerical example is provided to evaluate the feasibility of the proposed approach.

  • PDF

Linear Response Theory for the Mechanical Energy Relaxation of Solid High Polymers at Low Temperature (抵溫에서의 固體 重合體의 力學的 에너지 緩和에 對한 線形反應 理論)

  • Eu, Byung Chan
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.340-350
    • /
    • 1976
  • Linear response theory is proposed to be applied for theoretical description of the phenomena in mechanical spectroscopy of solid high polymers below glass transition temperatures. The energy dissipation by sample is given in terms of certain time correlation functions. It is shown that the result leads to the result by Kirkwood on the energy loss and relaxation of cross-linked polymers, if the Liouville operator is replaced by the diffusion equation operator of Kirkwood. An approximation method of calculating the correlation functions is considered in order to show a way to calculate relaxation times. Using the approximation method, we consider a double-well potential model for energy relaxation, in order to see a connection between the present theory and a model theory used in mechanical energy relaxation phenomena of solid polymers containing pendant cyclohexyl groups at low temperature.

  • PDF

Calculation Correctio Factor of Bridge Capacity using Fuzzy Sets Theory (퍼지를 이용한 교량 안전도평가의 보정계수 산정)

  • 조원신;박기태;김상효;황학주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.240-244
    • /
    • 1992
  • The values of a linguistic variable are words, phrases, or sentences in a given language. For example, structural damage can be considered as linguistic variable with values such a 'severely damaged', 'moderately damaged', which are meaningful classifications but not clearly defined, This paper is to evaluate reasonably the correction factor of bridge capacity with the aid of fuzzy sets theory. By using the above mentioned fuzzy measure, the concept of fuzzy integral and linear membership function can be defined. It is concluded that the fuzzy sets theory cam be applied to determine reasonably the correction factor of bridge capacity.

  • PDF

A Study on the Non-linear Relationship between Asymmetric Interdependence and Conflict (불균형적 상호의존성과 갈등간 비선형적 관계에 대한 연구)

  • Kim, Jong-Keun;Kim, Jae-Wook
    • Journal of Distribution Research
    • /
    • v.10 no.2
    • /
    • pp.49-72
    • /
    • 2005
  • As interdependence and conflict are important to the understanding of channel interactions, many researchers have studied their relationship. Identifying the relationship between interdependence and conflict will help understanding an exchange relationship. In social science, the relationship between interdependence and conflict is explained by two contradictory theories, and there are also inconsistent results in marketing science. The authors suggest non-linear relations between asymmetric interdependence and conflict, based on bilateral deterrence theory and conflict spiral theory. Using survey data from industrial market, we demonstrate that there is an inverted U-shaped relationship between asymmetric interdependence and interfirm conflict. The result show, as the magnitude of interdependence is high. the hypothesis on the non-linear relationship between asymmetric interdependence and conflicts is acceptable on both suppliers and distributors. Finally, we discuss several theoretical implications and suggest limitations and future research issues.

  • PDF

A note on convexity on linear vector space

  • Hong, Suk-Kang
    • Journal of the Korean Statistical Society
    • /
    • v.1 no.1
    • /
    • pp.18-24
    • /
    • 1973
  • Study on convexity has been improved in many statistical fields, such as linear programming, stochastic inverntory problems and decision theory. In proof of main theorem in Section 3, M. Loeve already proved this theorem with the $r$-th absolute moments on page 160 in [1]. Main consideration is given to prove this theorem using convex theorems with the generalized $t$-th mean when some convex properties hold on a real linear vector space $R_N$, which satisfies all properties of finite dimensional Hilbert space. Throughout this paper $\b{x}_j, \b{y}_j$ where $j = 1,2,......,k,.....,N$, denotes the vectors on $R_N$, and $C_N$ also denotes a subspace of $R_N$.

  • PDF