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ABSTRACT. In this paper we present an a posteriori error estimator for the stabilized P1 non-
conforming finite element method of the linear elasticity problem based on a nonsymmetric
H(div)-conforming approximation of the stress tensor in the first-order Raviart–Thomas space.
By combining the equilibrated residual method and the hypercircle method, it is shown that the
error estimator gives a fully computable upper bound on the actual error. Numerical results are
provided to confirm the theory and illustrate the effectiveness of our error estimator.

1. INTRODUCTION

In this paper we consider a homogeneous linear elastic material occupying a planar domain
Ω whose displacement u : Ω → R2 is described by the equations

σ = Cϵ(u), −divσ = f in Ω (1.1)

subject to the boundary conditions

u = uD on ΓD, σn = 0 on ΓN := ∂Ω \ ΓD, (1.2)

where σ is the Cauchy stress tensor, ϵ(u) = 1
2(∇u + (∇u)T ) is the linearized strain tensor,

and n is the unit outward normal on ∂Ω. For simplicity, we assume that ΓD is not empty, but
it is easy to extend all subsequent results to the pure Neumann case.

The coefficient C is a fourth-order elasticity tensor which is bounded, uniformly positive
definite and satisfies the symmetry condition. Hereafter we restrict ourselves to the isotropic
material in a state of plane strain, in which case C is given in the form

Cϵ(u) = 2µϵ(u) + λdivuI,

where I is the 2×2 identity tensor and µ, λ are the Lamé constants satisfying 0 < µ1 < µ < µ2

for some fixed µ1, µ2 and 0 < λ < ∞.
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The weak formulation for (1.1)–(1.2) seeks the displacement u ∈ H1
D(Ω;uD) such that

(Cϵ(u), ϵ(v))Ω = (f ,v)Ω ∀v ∈ H1
D(Ω), (1.3)

where (·, ·)Ω is the standard inner product in (L2(Ω))d (d = 1, 2) and

H1
D(Ω;uD) := {v ∈ (H1(Ω))2 : v|ΓD

= uD}, H1
D(Ω) := H1

D(Ω; 0).

We adopt the standard notation for the Sobolev space Hk(S) over a set S equipped with the
norm ∥ · ∥k,S and semi-norm | · |k,S .

Nowadays it is well established that one should apply adaptive mesh refinement based on
a posteriori error estimators for efficient implementation of numerical methods. Various types
of error estimators have been developed and successfully implemented for the linear elasticity
problem; see, for example, the survey paper [1]. We are particularly interested in the error
estimators which give fully computable upper bounds on the actual error without involving
unknown constants. Such error estimators were constructed in [2] for the P1 conforming
element and in [3] for the P2 conforming and nonconforming elements by combining the
equilibrated residual method and the hypercircle method. The key step there was recovery
of a symmetric H(div)-conforming approximation of the stress tensor σ in an appropriate
finite element space of symmetric tensors from the equilibrated normal stress approximation,
which is quite complicated due to the large dimension of the local finite element space used
(the Arnold–Winther space in [2] and the Arnold–Douglas–Gupta space in [3]), although the
computation is done locally on each element.

In this paper we propose a new error estimator which requires much less computation than
[2, 3], while achieving fully computable upper bounds on the actual error. This is accomplished
by recovering a nonsymmetric H(div)-conforming approximation of the stress tensor σ in the
nonsymmetric Raviart–Thomas space of first order whose local dimension is smaller and makes
the implementation easier than the symmetric tensor spaces mentioned above. When compared
with the ones from [2, 3], our estimator contains the additional contribution arising from the
non-symmetry of the recovered stress tensor approximation and thus strongly depending on
computable upper bounds on the constants of local Korn’s inequality. A similar consideration
was given to the Stokes problem in [4] but the derived estimator was not fully computable as
the constant in the upper bound was not estimated.

To fix ideas, we consider the stabilized P1 nonconforming finite element proposed in [5]
for which, unlike the P1 conforming element, the equilibrated normal stress approximation
is explicitly constructed without solving local linear systems. It is straightforward to apply
subsequent results to other P1 and P2 finite elements as long as the equilibrated normal stress
approximation (defined in Section 3) is available.

The rest of the paper is organized as follows. In the next section we introduce the stabilized
P1 nonconforming finite element method and some computable estimates related to Korn’s
inequality. In Section 3 we construct the nonsymmetric H(div)-conforming approximation of
the stress tensor and then derive the a posteriori error estimator which yields an upper bound
on the actual error in Section 4. Finally, Section 5 presents some numerical results to confirm
the theory and illustrate the effectiveness of our error estimator.
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2. STABILIZED P1 NONCONFORMING FEM AND KORN’S INEQUALITY

2.1. Stabilized P1 Nonconforming FEM. Let Th = {T} be a regular triangulation of Ω into
triangles with hT = diam(T ) and h = maxT∈Th hT . The set of three edges of an element
T ∈ Th is denoted by ET and the unit outward normal on ∂T by nT .

Let EΩ, ED and EN be the collections of all edges of Th lying on Ω, ΓD and ΓN , respectively,
and set Eh = EΩ ∪ED ∪EN . For each edge E ∈ EΩ, we fix a unit normal vector nE and define
the jump of v across E = ∂T+ ∩ ∂T− as

[[v]]|E = v|T+ − v|T− ,

where nE is directed from T+ to T−. For a boundary edge E ∈ ED ∪ EN , nE is taken to be
outward to ∂Ω and [[v]]|E is set to be zero.

Let Pk(T ) be the space of all polynomials on T whose total degrees are less than or equal
to k and let RM(T ) := span{(1, 0), (0, 1), (y,−x)} be the space of rigid body motions on T .
Notice that v ∈ RM(T ) if and only if ϵ(v) = 0.

The Crouzeix–Raviart P1 nonconforming finite element space is defined as

V h =

{
vh ∈ (L2(Ω))2 : vh|T ∈ (P1(T ))

2 ∀T ∈ Th and
∫
E
[[vh]] ds = 0 ∀E ∈ EΩ

}
,

and the subspace of V h with zero mean values on ED as

V h,D =

{
vh ∈ V h :

∫
E
vh ds = 0 ∀E ∈ ED

}
.

Then the stabilized P1 nonconforming FEM for the linear elasticity problem (1.3) reads as
follows (cf. [5]): find uh ∈ V h such that

∫
E(uh − uD) ds = 0 for all E ∈ ED and

Ah(uh,vh) = (f ,vh)Ω ∀vh ∈ V h,D, (2.1)

where

Ah(uh,vh) = (Cϵh(uh), ϵh(vh))Ω +
∑
E∈EΩ

µγh−1
E

∫
E
[[uh]] · [[vh]] ds.

Here γ > 0 is the stabilization parameter, hE = diam(E), and ϵh(·) is the differential operator
ϵ(·) applied piecewise over Th.

2.2. Korn’s Inequality and related estimates. For a subdomain K ⊂ Ω, Korn’s inequality
asserts that there exists a constant RK > 0 depending only on K such that

∥∇v∥20,K ≤ RK∥ϵ(v)∥20,K (2.2)

for all v ∈ (H1(K))2 with
∫
K curlv dx = 0. Using the results in [6, 7], one can obtain the

following computable upper bounds

RT ≤ 2

sin2(θmin/4)
, RS ≤ 2

sin2(π/8)
= 13.6569 · · · (2.3)

for a triangle T with the minimum angle θmin and a square S (see [8]).
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In deriving the a posteriori error estimator based on a nonsymmetric approximation of the
stress tensor, we will need the operator ΠK : (H1(K))2 → RM(K) defined by∫

K
(v −ΠKv) dx =

∫
K
curl(v −ΠKv) dx = 0.

The following estimates were first noted in [3, Appendix A]

∥∇(v −ΠKv)∥0,K ≤ R
1/2
K ∥ϵ(v)∥0,K , (2.4)

∥v −ΠKv∥0,K ≤ R
1/2
K

hK
π

∥ϵ(v)∥0,K , (2.5)

where hK is the diameter of K. The first result is a direct consequence of Korn’s inequality
(2.2) and the second result can be obtained by applying the Poincaré inequality [9] and then
the first result.

3. H(div)-CONFORMING APPROXIMATION OF STRESS TENSOR

To recover a H(div)-conforming approximation of the stress tensor σ, we first need to
construct the normal stress approximation gT ≈ σnT |∂T on every element T ∈ Th which
fulfills the following equilibration conditions (see, e.g., [2, 10, 11])

gT1
|E + gT2

|E = 0 for E = ∂T1 ∩ ∂T2, (3.1)

gT |E = 0 for E ∈ ET ∩ EN , (3.2)∫
T
f · v dx+

∫
∂T

gT · v ds = 0 for v ∈ RM(T ). (3.3)

For the stabilized P1 nonconforming FEM (2.1), this can be done by an easy adaptation of the
result for the Stokes problem given in [4].

Definition 3.1. For each T ∈ Th and E ∈ ET , we define the normal stress approximation

gT |E =
1

|E|

{∫
T
Cϵ(uh)∇ϕ

(T )
E dx−

∫
T
fϕ

(T )
E dx

+
∑

E′∈ET

µγh−1
E′

∫
E′
[[uh]]∂Tϕ

(T )
E ds

}
− µγh−1

E [[uh]]∂T |E ,

where [[v]]∂T is the jump of v from the interior to the exterior of T

[[v]]∂T |E = (nT |E · nE)[[v]]|E .

Here ϕ
(T )
E denotes the scalar-valued local basis function for P1(T ) associated with the edge

E ∈ ET satisfying ∫
E′

ϕ
(T )
E ds = δE,E′ |E| ∀E′ ∈ ET .

The proof of the equilibration conditions (3.1)–(3.3) can be done similarly to [4, Theorem 1].
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Now we recover a nonsymmetric H(div)-conforming approximation σh of the stress tensor
in the nonsymmetric Raviart–Thomas space of first order from the equilibrated normal stress
approximation gT given in Definition 3.1 which is piecewise linear over ∂T . We remark that
the same recovery process was exploited in [12] for a posteriori error estimation of the Stokes
equation involving the nonsymmetric gradient tensor. Below Pk denotes the L2 projection onto
the space of piecewise constant (k = 0) or linear (k = 1) functions over Th.

Definition 3.2. For each element T ∈ Th, we determine σ1
h|T ∈ (P1(T ))

2×2 by the condition

σ1
h|TnT = gT on ∂T

and define the stress tensor approximation

σh|T = σ1
h|T − 1

3

3∑
i=1

P1f(xi)⊗ (x− xi)λi,

where {xi}i=1,2,3 are the vertices of T , {λi}i=1,2,3 are the barycentric coordinates such that
λi(xj) = δij , and (u⊗ v)ij := uivj .

Since (x− xi)λi has vanishing normal components on ∂T , we immediately get

σh|TnT = gT on ∂T , (3.4)

from which it follows by (3.1)–(3.2) that σh is indeed H(div)-conforming and σh ·n|ΓN
= 0.

Moreover, we have the following result.

Theorem 3.3. Let σh be defined by Definition 3.2. Then we have

divσh + P1f = 0 and P0σ
AS
h = 0. (3.5)

Proof. The proof of the first result is essentially given in [12]. We recall the proof for the
reader’s convenience. Taking v ∈ (P0(T ))

2 in (3.3), we can show that

divσ1
h + P0f = 0.

Now use the identity
λi(x) = ∇λi · (x− xi) + 1

to obtain

divσh = divσ1
h −

1

3

3∑
i=1

P1f(xi) div
(
(x− xi)λi

)
= −P0f − 1

3

3∑
i=1

P1f(xi) (3λi − 1)

= −P0f − (P1f − P0f) = −P1f ,
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which is the first result. To prove the second result, we use (3.4), the first result and then (3.3)
to obtain for vh ∈ RM(T )∫

T
σh : ∇vh dx =

∫
∂T

σhnT · vh ds−
∫
T
divσh · vh dx

=

∫
∂T

gT · vh ds+

∫
T
f · vh dx = 0.

Now the second result is obtained by taking vh = (y,−x). �

4. A POSTERIORI ERROR ESTIMATION

In this section we will derive and analyze an a posteriori error estimator which gives a fully
computable upper bound on the numerical error u − uh of the P1 nonconforming FEM (2.1)
measured in the energy semi-norm

|||v|||2 := (Cϵh(v), ϵh(v))Ω =
∑
T∈Th

|||v|||2T , |||v|||2T := (Cϵ(v), ϵ(v))T .

Following [3, 4], we decompose the error u− uh into two contributions

u− uh = (u− ξ) + (ξ − uh),

where ξ ∈ H1
D(Ω;uD) is the solution of

(Cϵ(ξ), ϵ(v))Ω = (Cϵh(uh), ϵ(v))Ω ∀v ∈ H1
D(Ω). (4.1)

By the Galerkin orthogonality (Cϵh(ξ − uh), ϵ(u − ξ))Ω = 0, we obtain the Pythagorean
relationship

|||u− uh|||2 = |||u− ξ|||2 + |||ξ − uh|||2.
The following lemma presents the abstract error formulas for the two contributions on the
right-hand side, the proof of which is a simple modification of that of [4].

Lemma 4.1. Let ξ ∈ H1
D(Ω;uD) be the solution of (4.1). Then we have

|||u− ξ||| = sup
v∈H1

D(Ω)

(f ,v)Ω − (Cϵh(uh), ϵ(v))Ω
|||v|||

(4.2)

and
|||ξ − uh||| = inf

χ∈H1
D(Ω;uD)

|||χ− uh|||. (4.3)

Proof. The first result is an immediate consequence of the equality

(Cϵ(u− ξ), ϵ(v))Ω = (f ,v)Ω − (Cϵh(uh), ϵ(v))Ω ∀v ∈ H1
D(Ω),

while the second result follows from the fact that ξ is the orthogonal projection of uh onto the
hyperplane H1

D(Ω;uD) with respect to the energy semi-inner product (Cϵh(·), ϵh(·))Ω. �
By the estimate (4.3), |||ξ − uh||| measures the distance between the numerical solution uh

and the continuous solution space H1
D(Ω;uD) in the energy semi-norm, commonly referred

to as the nonconforming error, while |||u− ξ||| is called the conforming error.
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4.1. Conforming error estimator. In this subsection we combine the equilibrated residual
method and the hypercircle method to derive an estimator for the conforming error |||u − ξ|||
based on the estimate (4.2). To begin with, let us define the symmetric and antisymmetric parts
of a tensor τ = τS + τAS by

τS =
τ + τT

2
and τAS =

τ − τT

2
,

where τT is the transpose of τ . It is obvious that

(τS , τAS)T = 0 and ∥τS∥0,T + ∥τAS∥0,T ≤ ∥τ∥0,T .

Now we present the main result of this paper which generalizes Theorem 3.4 in [2] to the
nonsymmetric H(div)-conforming approximation of the stress tensor.

Theorem 4.2. Let σh be defined by Definition 3.2 and let

ηCF,T := ∥C−1/2(σS
h − Cϵ(uh))∥0,T +

(
RT

2µ

)1/2hT
π

∥f + divσh∥0,T

ηAS,K :=

(
RK

2µ

)1/2

∥σAS
h ∥0,K

for an element T and a subdomain K. Then we have

|||u− ξ||| ≤
{ ∑

T∈Th

(ηCF,T + ηAS,T )
2

}1/2

.

Moreover, if Ω is partitioned into the subdomains {Ωi}Ni=1 such that each Ωi is a union of
elements in Th, then we have

|||u− ξ||| ≤
( ∑

T∈Th

η2CF,T

)1/2

+

( N∑
i=1

η2AS,Ωi

)1/2

.

Proof. We are going to estimate the right-hand side of (4.2). First note that for v ∈ H1
D(Ω),

(f ,v)Ω − (Cϵh(uh), ϵ(v))Ω =
∑
T∈Th

rT (v),

where

rT (v) :=

∫
T
f · v dx+

∫
∂T

σhnT · v ds−
∫
T
Cϵ(uh) : ϵ(v) dx.

Using integration by parts, we get

rT (v) =

∫
T
σh : ∇v dx−

∫
T
Cϵ(uh) : ϵ(v) dx+

∫
T
(f + divσh) · v dx

=

∫
T
(σS

h − Cϵ(uh)) : ϵ(v) dx+

∫
T
(f + divσh) · v dx+

∫
T
σAS
h : ∇v dx.
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The first term is simply bounded by∫
T
(σS

h − Cϵ(uh)) : ϵ(v) dx ≤ ∥C−1/2(σS
h − Cϵ(uh))∥0,T |||v|||T .

The second term is handled by using the first result of (3.5) and the estimate (2.5)∫
T
(f + divσh) · v dx =

∫
T
(f + divσh) · (v −ΠTv) dx

≤ ∥f + divσh∥0,T ·R1/2
T

hT
π

∥ϵ(v)∥0,T

≤
(
RT

2µ

)1/2hT
π

∥f + divσh∥0,T |||v|||T ,

where we used the inequality ∥ϵ(v)∥20,T ≤ 1
2µ |||v|||

2
T . As a result, it follows that∫

T
(σS

h − Cϵ(uh)) : ϵ(v) dx+

∫
T
(f + divσh) · v dx ≤ ηCF,T |||v|||T .

For the third term, we use the second result of (3.5) and the estimate (2.4) on each element T
to obtain∫

T
σAS
h : ∇v dx =

∫
T
σAS
h : ∇(v −ΠTv) dx ≤

(
RT

2µ

)1/2

∥σAS
h ∥0,T |||v|||T ,

which gives∑
T∈Th

rT (v) ≤
∑
T∈Th

(ηCF,T + ηAS,T )|||v|||T ≤
{ ∑

T∈Th

(ηCF,T + ηAS,T )
2

}1/2

|||v|||.

Otherwise we can do the same thing on each subdomain Ωi to obtain∫
Ωi

σAS
h : ∇v dx =

∫
Ωi

σAS
h : ∇(v −ΠΩiv) dx ≤

(
RΩi

2µ

)1/2

∥σAS
h ∥0,Ωi |||v|||Ωi ,

which gives ∑
T∈Th

rT (v) ≤
∑
T∈Th

ηCF,T |||v|||T +
N∑
i=1

ηAS,Ωi |||v|||Ωi

≤
( ∑

T∈Th

η2CF,T

)1/2

|||v|||+
( N∑

i=1

η2AS,Ωi

)1/2

|||v|||.

The proof is completed by invoking the estimate (4.2). �
Remark 4.3. One can readily check that Theorem 4.2 is valid for any H(div)-conforming
approximation σh satisfying (3.5). In particular, the symmetric approximation of the stress
tensor from gT in the Arnold–Winther space [2] or in the Arnold–Douglas–Gupta space [3]
yields a simpler error estimator with σAS

h = 0. But the nonsymmetric approximation given in
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Definition 3.2 requires much less computation and makes the implementation easier than the
symmetric ones.

Remark 4.4. In practice, ηCF,T and ηAS,K are computed using the upper bounds (2.3). The
second result of Theorem 4.2 may give sharper upper bounds, e.g., when every Ωi is a square.

4.2. Nonconforming error estimator. Based on the estimate (4.3), a computable upper bound
on the nonconforming error |||ξ − uh||| is obtained by choosing a suitable χ ∈ H1

D(Ω;uD).
Like in [3, 4], we simply choose the continuous piecewise linear or quadratic polynomial ũh

constructed by averaging the nodal values of uh at Lagrange nodes and enforcing the Dirichlet
boundary condition at Dirichlet nodes, i.e., interpolating

ũh(z) =


1

card(ωz)

∑
T∈ωz

uh|T (z) for z ∈ Nh \ Nh,D,

uD(z) for z ∈ Nh,D,

where Nh is the set of all linear or quadratic Lagrange nodes of Th, Nh,D = Nh ∩ ΓD, and ωz

is the set of all elements in Th sharing the node z. The proof of the following theorem is trivial
and thus omitted.

Theorem 4.5. Let ũh be the continuous piecewise linear or quadratic polynomial constructed
as above and let

ηNC,T := |||ũh − uh|||T , oscT (uD) := inf
χ

|||χ|||,

where ũD := ũh|ΓD
and the infimum is taken over all χ ∈ H1(T ) such that

χ =

{
uD − ũD on ∂T ∩ ΓD,

0 on ∂T \ ΓD.
(4.4)

Then we have

|||ξ − uh||| ≤
{ ∑

T∈Th

(ηNC,T + oscT (uD))
2

}1/2

.

Remark 4.6. Since ũD is the piecewise linear or quadratic Lagrange interpolant of uD over
ED, the second term oscT (uD) is called the data oscillation of uD on ∂T ∩ ΓD and it can be
shown that (cf. [3, 4])

oscT (uD) ≤ C

( ∑
E∈ET∩ED

hE |uD − ũD|21,E
)1/2

.

This term can be estimated using an extension of the boundary data (4.4) as in [3] or may be
regarded as a higher order perturbation and negligible if uD is piecewise smooth over ED.
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5. NUMERICAL RESULTS

In this section we present some numerical results to confirm the theory established in the
previous section and illustrate the effectiveness of our error estimator. Since the domain Ω is
either a square (Example 1) or composed of three squares which are unions of elements in Th
(Example 2), we can define the total error estimator in two ways (cf. Theorem 4.2)

η20 :=
∑
T∈Th

(ηCF,T + ηAS,T )
2 +

∑
T∈Th

η2NC,T

and

η21 :=

{( ∑
T∈Th

η2CF,T

)1/2

+

(
RS

2µ

)1/2

∥σAS
h ∥0,Ω

}2

+
∑
T∈Th

η2NC,T ,

where the constants RT and RS are replaced by the upper bounds given in (2.3), respectively,
and the data oscillation oscT (uD) is ignored. The nonconforming error estimator ηNC,T is
computed using the piecewise quadratic polynomial. For comparison we also compute the
total error estimator

η2sym :=
∑
T∈Th

η2CF,T +
∑
T∈Th

η2NC,T

using the symmetric approximation of the stress tensor in the Arnold–Winther space (cf. [2]).

Example 1. Consider the following solution u = (u1, u2) on the unit square Ω = (0, 1)2

u1(x, y) = cos(2πx) sin(2πy), u2(x, y) = −u1(y, x)

with the Lamé constants µ = 1.0, λ = 5.0 and the corresponding body force f . We impose
the homogeneous Neumann boundary condition

σn = 0 on ΓN = {(x, y) : x = 1, 0 ≤ y ≤ 1}.

and the Dirichlet boundary condition on the remaining part ΓD = ∂Ω \ ΓN .
As the solution u is smooth, numerical experiments are performed on a sequence of uniform

meshes obtained by first partitioning Ω into equal squares of size h = 1
2m (m = 3, 4, 5, 6, 7, 8)

and then dividing every square into two triangles along the diagonal of slope 1.
Numerical results are reported in Tables 1–2, where the three contributions of the total error

estimator are defined as

η2CF =
∑
T∈Th

η2CF,T , η2AS =
∑
T∈Th

η2AS,T or
RS

2µ
∥σAS

h ∥20,Ω, η2NC =
∑
T∈Th

η2NC,T

and the effectivity index θ is the ratio of the total error estimator to the actual error |||u− uh|||.
We observe that θ is always bigger than unity, which means that the total error estimator gives
an upper bound on the actual error as predicted by the theory. Although the best result is
obtained for the estimator ηsym, our estimator η1 seems to be competitive in terms of accuracy
and computational cost. This is partly due to the fact that the common contribution ηNC is
comparable to the sum ηCF + ηAS .
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TABLE 1. Mesh size, actual error, three contributions of η1 and effectivity
index for Example 1.

1/h |||u− uh||| ηCF ηAS ηNC θ
8 1.802e+0 1.573e+0 1.997e+0 3.025e+0 2.597

16 8.998e–1 5.631e–1 1.063e+0 1.427e+0 2.404
32 4.492e–1 2.533e–1 5.424e–1 6.993e–1 2.358
64 2.244e–1 1.231e–1 2.732e–1 3.462e–1 2.345

128 1.121e–1 6.112e–2 1.370e–1 1.722e–1 2.341
256 5.605e–2 3.050e–2 6.860e–2 8.590e–2 2.340

TABLE 2. Comparison of the error estimators η0 and ηsym for Example 1.

η0 ηsym
1/h ηCF ηAS θ ηCF ηAS θ

8 1.573e+0 3.918e+0 3.468 2.809e+0 0.000e+0 2.291
16 5.631e–1 2.085e+0 3.333 1.308e+0 0.000e+0 2.151
32 2.533e–1 1.064e+0 3.310 6.498e–1 0.000e+0 2.125
64 1.231e–1 5.359e–1 3.307 3.259e–1 0.000e+0 2.119

128 6.112e–2 2.688e–1 3.308 1.635e–1 0.000e+0 2.118
256 3.050e–2 1.346e–1 3.309 8.188e–2 0.000e+0 2.117

Example 2. Let (r, θ) be the polar coordinates and consider the solution u = (u1, u2) on the
Γ-shaped domain Ω = (−1, 1)2 \ [0, 1]× [−1, 0] (cf. [2, 3])

u1(r, θ) =
1

2µ
rα

(
A cos(αθ)− cos((α− 2)θ)

)
,

u2(r, θ) =
1

2µ
rα

(
B sin(αθ) + sin((α− 2)θ)

)
with the parameters chosen as

µ = 1.0, λ = 5.0, α = 0.6, A = 1.0, B =
2(3µ+ λ)

(λ+ µ)α
−A.

The corresponding body force f is then zero and the Dirichlet boundary condition is imposed
on the whole boundary ∂Ω.

As the solution u is singular near the origin, we perform adaptive mesh refinement starting
with the initial mesh shown in Fig. 1 and using the maximum criterion: mark an element
T ∈ Th for refinement if

ηT > 0.5 max
T ′∈Th

ηT ′ ,

where the local error indicator ηT is defined with the three contributions of η1

ηT :=

(
η2CF,T +

RS

2µ
∥σAS

h ∥20,T + η2NC,T

)1/2

.
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FIGURE 1. Initial and adapted meshes after 7 and 14 refinements for Example 2.

TABLE 3. Number of unknowns, actual error, three contributions of η1 and
effectivity index for Example 2.

N |||u− uh||| ηCF ηAS ηNC θ
44 8.782e–1 1.201e–1 3.294e–1 1.815e+0 2.130

132 6.379e–1 1.535e–1 3.371e–1 1.552e+0 2.551
240 4.917e–1 1.318e–1 2.681e–1 1.123e+0 2.424
364 3.840e–1 1.190e–1 2.192e–1 8.363e–1 2.349
490 3.218e–1 1.113e–1 1.920e–1 6.791e–1 2.311
686 2.714e–1 1.005e–1 1.724e–1 5.377e–1 2.222
960 2.303e–1 9.114e–2 1.542e–1 4.567e–1 2.251

1432 1.845e–1 7.667e–2 1.307e–1 3.721e–1 2.309
2102 1.498e–1 6.570e–2 1.137e–1 3.101e–1 2.391
3472 1.185e–1 5.214e–2 9.058e–2 2.411e–1 2.364
4998 9.802e–2 4.403e–2 7.717e–2 2.014e–1 2.398
7400 8.015e–2 3.718e–2 6.491e–2 1.671e–1 2.444

11618 6.473e–2 2.970e–2 5.166e–2 1.322e–1 2.398
17010 5.324e–2 2.468e–2 4.281e–2 1.094e–1 2.414
25886 4.288e–2 2.029e–2 3.545e–2 8.919e–2 2.453
39068 3.503e–2 1.665e–2 2.896e–2 7.285e–2 2.454

Two adapted meshes generated after 7 and 14 refinements are shown in the middle and right
figures of Fig. 1. As expected, the mesh refinement is highly concentrated around the origin
to resolve the singular behavior of u. Furthermore, numerical results reported in Tables 3–4
confirm the theory and the effectiveness of our estimator η1 also in the context of adaptive mesh
refinement. Finally, it is found that the actual error attains the optimal order of convergence
with respect to the number of unknowns N

|||u− uh||| = O(N−0.50),

demonstrating the efficiency of adaptive mesh refinement.
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TABLE 4. Comparison of the error estimators η0 and ηsym for Example 2.

η0 ηsym
N ηCF ηAS θ ηCF ηAS θ
44 1.201e–1 6.461e–1 2.242 6.056e–1 0.000e+0 2.179

132 1.535e–1 6.612e–1 2.743 5.243e–1 0.000e+0 2.568
240 1.318e–1 5.259e–1 2.639 4.091e–1 0.000e+0 2.430
364 1.190e–1 4.299e–1 2.595 3.242e–1 0.000e+0 2.336
490 1.113e–1 3.767e–1 2.584 2.818e–1 0.000e+0 2.285
686 1.005e–1 3.382e–1 2.541 2.503e–1 0.000e+0 2.185
960 9.114e–2 3.025e–1 2.603 2.203e–1 0.000e+0 2.202

1432 7.667e–2 2.564e–1 2.690 1.827e–1 0.000e+0 2.247
2102 6.570e–2 2.229e–1 2.814 1.527e–1 0.000e+0 2.307
3472 5.214e–2 1.777e–1 2.797 1.215e–1 0.000e+0 2.278
4998 4.403e–2 1.514e–1 2.851 1.021e–1 0.000e+0 2.304
7400 3.718e–2 1.273e–1 2.915 8.438e–2 0.000e+0 2.336

11618 2.970e–2 1.013e–1 2.864 6.769e–2 0.000e+0 2.294
17010 2.468e–2 8.397e–2 2.885 5.581e–2 0.000e+0 2.306
25886 2.029e–2 6.953e–2 2.941 4.560e–2 0.000e+0 2.336
39068 1.665e–2 5.680e–2 2.943 3.715e–2 0.000e+0 2.334
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